BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 24393563)

  • 1. Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars.
    Ding W; Dong X; Ime IM; Gao B; Ma LQ
    Chemosphere; 2014 Jun; 105():68-74. PubMed ID: 24393563
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential mechanisms of cadmium removal from aqueous solution by Canna indica derived biochar.
    Cui X; Fang S; Yao Y; Li T; Ni Q; Yang X; He Z
    Sci Total Environ; 2016 Aug; 562():517-525. PubMed ID: 27107650
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the mechanisms of biochar's removal of lead from solution.
    Wang Z; Liu G; Zheng H; Li F; Ngo HH; Guo W; Liu C; Chen L; Xing B
    Bioresour Technol; 2015 Feb; 177():308-17. PubMed ID: 25496953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass.
    Wang S; Gao B; Zimmerman AR; Li Y; Ma L; Harris WG; Migliaccio KW
    Chemosphere; 2015 Sep; 134():257-62. PubMed ID: 25957037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of pyrolysis temperature on lead immobilization by chemically modified coconut fiber-derived biochars in aqueous environments.
    Wu W; Li J; Niazi NK; Müller K; Chu Y; Zhang L; Yuan G; Lu K; Song Z; Wang H
    Environ Sci Pollut Res Int; 2016 Nov; 23(22):22890-22896. PubMed ID: 27572693
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption and cosorption of lead and sulfapyridine on carbon nanotube-modified biochars.
    Inyang M; Gao B; Zimmerman A; Zhou Y; Cao X
    Environ Sci Pollut Res Int; 2015 Feb; 22(3):1868-76. PubMed ID: 25212810
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Adsorption of Cd(II) varies with biochars derived at different pyrolysis temperatures].
    Wang ZY; Liu GC; Monica X; Li FM; Zheng H
    Huan Jing Ke Xue; 2014 Dec; 35(12):4735-44. PubMed ID: 25826948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Geochemical and spectroscopic investigations of Cd and Pb sorption mechanisms on contrasting biochars: engineering implications.
    Trakal L; Bingöl D; Pohořelý M; Hruška M; Komárek M
    Bioresour Technol; 2014 Nov; 171():442-51. PubMed ID: 25226061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Pyrolysis condition affected sulfamethazine sorption by tea waste biochars.
    Rajapaksha AU; Vithanage M; Zhang M; Ahmad M; Mohan D; Chang SX; Ok YS
    Bioresour Technol; 2014 Aug; 166():303-8. PubMed ID: 24926603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Removal of Cd, Cu, Pb, and Zn from aqueous solutions by biochars.
    Doumer ME; Rigol A; Vidal M; Mangrich AS
    Environ Sci Pollut Res Int; 2016 Feb; 23(3):2684-92. PubMed ID: 26438367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Biomass based activated carbon obtained from sludge and sugarcane bagasse for removing lead ion from wastewater.
    Tao HC; Zhang HR; Li JB; Ding WY
    Bioresour Technol; 2015 Sep; 192():611-7. PubMed ID: 26093255
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lead sorptive removal using magnetic and nonmagnetic fast pyrolysis energy cane biochars.
    Mohan D; Singh P; Sarswat A; Steele PH; Pittman CU
    J Colloid Interface Sci; 2015 Jun; 448():238-50. PubMed ID: 25744855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of feedstock and pyrolysis temperature on biochar adsorption of ammonium and nitrate.
    Gai X; Wang H; Liu J; Zhai L; Liu S; Ren T; Liu H
    PLoS One; 2014; 9(12):e113888. PubMed ID: 25469875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanistic investigation of mercury sorption by Brazilian pepper biochars of different pyrolytic temperatures based on X-ray photoelectron spectroscopy and flow calorimetry.
    Dong X; Ma LQ; Zhu Y; Li Y; Gu B
    Environ Sci Technol; 2013; 47(21):12156-64. PubMed ID: 24040905
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fundamental and molecular composition characteristics of biochars produced from sugarcane and rice crop residues and by-products.
    Jeong CY; Dodla SK; Wang JJ
    Chemosphere; 2016 Jan; 142():4-13. PubMed ID: 26058554
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures.
    Chen B; Chen Z
    Chemosphere; 2009 Jun; 76(1):127-33. PubMed ID: 19282020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Capacity and mechanisms of ammonium and cadmium sorption on different wetland-plant derived biochars.
    Cui X; Hao H; Zhang C; He Z; Yang X
    Sci Total Environ; 2016 Jan; 539():566-575. PubMed ID: 26386447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of levofloxacin from aqueous solution using rice-husk and wood-chip biochars.
    Yi S; Gao B; Sun Y; Wu J; Shi X; Wu B; Hu X
    Chemosphere; 2016 May; 150():694-701. PubMed ID: 26796588
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Feedstock nitrogen content mediates maximum possible Pb sorption capacity of biochars.
    Ogbuagu C; Robinson S; Sizmur T
    Environ Sci Process Impacts; 2023 Dec; 25(12):2102-2109. PubMed ID: 37909880
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality.
    Jassal RS; Johnson MS; Molodovskaya M; Black TA; Jollymore A; Sveinson K
    J Environ Manage; 2015 Apr; 152():140-4. PubMed ID: 25621388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.