These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
184 related articles for article (PubMed ID: 24394435)
1. Effects of surface activation on the structural and catalytic properties of ruthenium nanoparticles supported on mesoporous silica. Ma X; Lin R; Beuerle C; Jackson JE; Obare SO; Ofoli RY Nanotechnology; 2014 Jan; 25(4):045701. PubMed ID: 24394435 [TBL] [Abstract][Full Text] [Related]
2. Thermally reduced ruthenium nanoparticles as a highly active heterogeneous catalyst for hydrogenation of monoaromatics. Su F; Lv L; Lee FY; Liu T; Cooper AI; Zhao XS J Am Chem Soc; 2007 Nov; 129(46):14213-23. PubMed ID: 17973376 [TBL] [Abstract][Full Text] [Related]
3. Highly loaded and thermally stable Cu-containing mesoporous silica-active catalyst for the NO + CO reaction. Pantazis CC; Trikalitis PN; Pomonis PJ J Phys Chem B; 2005 Jun; 109(25):12574-81. PubMed ID: 16852555 [TBL] [Abstract][Full Text] [Related]
4. Synthesis and catalytic application of PVP-coated Ru nanoparticles embedded in a porous metal-organic framework. Sadakiyo M; Kon-no M; Sato K; Nagaoka K; Kasai H; Kato K; Yamauchi M Dalton Trans; 2014 Aug; 43(29):11295-8. PubMed ID: 24934183 [TBL] [Abstract][Full Text] [Related]
5. Supported Ru catalysts prepared by two sonication-assisted methods for preferential oxidation of CO in H2. Perkas N; Teo J; Shen S; Wang Z; Highfield J; Zhong Z; Gedanken A Phys Chem Chem Phys; 2011 Sep; 13(34):15690-8. PubMed ID: 21799973 [TBL] [Abstract][Full Text] [Related]
6. High-temperature-stable and regenerable catalysts: platinum nanoparticles in aligned mesoporous silica wells. Xiao C; Maligal-Ganesh RV; Li T; Qi Z; Guo Z; Brashler KT; Goes S; Li X; Goh TW; Winans RE; Huang W ChemSusChem; 2013 Oct; 6(10):1915-22. PubMed ID: 24039118 [TBL] [Abstract][Full Text] [Related]
7. Fundamentals of melt infiltration for the preparation of supported metal catalysts. The case of Co/SiO2 for Fischer-Tropsch synthesis. Eggenhuisen TM; den Breejen JP; Verdoes D; de Jongh PE; de Jong KP J Am Chem Soc; 2010 Dec; 132(51):18318-25. PubMed ID: 21126080 [TBL] [Abstract][Full Text] [Related]
8. Silica supported ruthenium oxide nanoparticulates as efficient catalysts for water oxidation. Zhang Y; Ren T Chem Commun (Camb); 2012 Nov; 48(89):11005-7. PubMed ID: 23038061 [TBL] [Abstract][Full Text] [Related]
9. Pt3Ti nanoparticles: fine dispersion on SiO2 supports, enhanced catalytic CO oxidation, and chemical stability at elevated temperatures. Saravanan G; Abe H; Xu Y; Sekido N; Hirata H; Matsumoto S; Yoshikawa H; Yamabe-Mitarai Y Langmuir; 2010 Jul; 26(13):11446-51. PubMed ID: 20586414 [TBL] [Abstract][Full Text] [Related]
10. Ambient synthesis of high-quality ruthenium nanowires and the morphology-dependent electrocatalytic performance of platinum-decorated ruthenium nanowires and nanoparticles in the methanol oxidation reaction. Koenigsmann C; Semple DB; Sutter E; Tobierre SE; Wong SS ACS Appl Mater Interfaces; 2013 Jun; 5(12):5518-30. PubMed ID: 23742154 [TBL] [Abstract][Full Text] [Related]
12. A versatile sonication-assisted deposition-reduction method for preparing supported metal catalysts for catalytic applications. Padilla RH; Priecel P; Lin M; Lopez-Sanchez JA; Zhong Z Ultrason Sonochem; 2017 Mar; 35(Pt B):631-639. PubMed ID: 26809489 [TBL] [Abstract][Full Text] [Related]
13. Preparation and Characterization of Polymer-Stabilized Ruthenium-Platinum and Ruthenium-Palladium Bimetallic Colloids and Their Catalytic Properties for Hydrogenation of o-Chloronitrobenzene. Liu M; Yu W; Liu H; Zheng J J Colloid Interface Sci; 1999 Jun; 214(2):231-237. PubMed ID: 10339363 [TBL] [Abstract][Full Text] [Related]
14. CO Oxidation at 20 °C on Au Catalysts Supported on Mesoporous Silica: Effects of Support Structural Properties and Modifiers. Moreno-Martell A; Pawelec B; Nava R; Mota N; Escamilla-Perea L; Navarro RM; Fierro JLG Materials (Basel); 2018 Jun; 11(6):. PubMed ID: 29867061 [TBL] [Abstract][Full Text] [Related]
15. Ruthenium catalysts supported on high-surface-area zirconia for the catalytic wet oxidation of N,N-dimethyl formamide. Sun G; Xu A; He Y; Yang M; Du H; Sun C J Hazard Mater; 2008 Aug; 156(1-3):335-41. PubMed ID: 18262352 [TBL] [Abstract][Full Text] [Related]
16. High-surface-area catalyst design: Synthesis, characterization, and reaction studies of platinum nanoparticles in mesoporous SBA-15 silica. Rioux RM; Song H; Hoefelmeyer JD; Yang P; Somorjai GA J Phys Chem B; 2005 Feb; 109(6):2192-202. PubMed ID: 16851211 [TBL] [Abstract][Full Text] [Related]
17. Graphene-supported ultrafine metal nanoparticles encapsulated by mesoporous silica: robust catalysts for oxidation and reduction reactions. Shang L; Bian T; Zhang B; Zhang D; Wu LZ; Tung CH; Yin Y; Zhang T Angew Chem Int Ed Engl; 2014 Jan; 53(1):250-4. PubMed ID: 24288240 [TBL] [Abstract][Full Text] [Related]
18. Structure and reactivity of Ru nanoparticles supported on modified graphite surfaces: a study of the model catalysts for ammonia synthesis. Song Z; Cai T; Hanson JC; Rodriguez JA; Hrbek J J Am Chem Soc; 2004 Jul; 126(27):8576-84. PubMed ID: 15238017 [TBL] [Abstract][Full Text] [Related]