BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

348 related articles for article (PubMed ID: 24394530)

  • 1. Facile and low temperature route to synthesis of CuS nanostructure in mesoporous material by solvothermal method.
    Sohrabnezhad Sh; Zanjanchi MA; Hosseingholizadeh S; Rahnama R
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Apr; 123():142-50. PubMed ID: 24394530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. As-synthesis of nanostructure AgCl/Ag/MCM-41 composite.
    Sohrabnezhad Sh; Pourahmad A
    Spectrochim Acta A Mol Biomol Spectrosc; 2012 Feb; 86():271-5. PubMed ID: 22112577
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced photocatalytic and adsorptive degradation of organic dyes by mesoporous Cu/Al2O3-MCM-41: intra-particle mesoporosity, electron transfer and OH radical generation under visible light.
    Pradhan AC; Parida KM; Nanda B
    Dalton Trans; 2011 Jul; 40(28):7348-56. PubMed ID: 21681290
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of Cu/CuO nanoparticles in mesoporous material by solid state reaction.
    Sohrabnezhad Sh; Valipour A
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():298-302. PubMed ID: 23778169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile room-temperature synthesis of carboxylated graphene oxide-copper sulfide nanocomposite with high photodegradation and disinfection activities under solar light irradiation.
    Yu S; Liu J; Zhu W; Hu ZT; Lim TT; Yan X
    Sci Rep; 2015 Nov; 5():16369. PubMed ID: 26553709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of carbon nanotubes using mesoporous Fe-MCM-41 catalysts.
    Ko JR; Ahn WS
    J Nanosci Nanotechnol; 2006 Nov; 6(11):3442-5. PubMed ID: 17252785
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nanostructure copper oxocobaltate fabricated by co-precipitation route using copper and cobalt nitrate as precursors: characterization by combined diffuse reflectance and FT infrared spectra.
    Habibi MH; Rezvani Z
    Spectrochim Acta A Mol Biomol Spectrosc; 2014 Sep; 130():309-12. PubMed ID: 24793481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural elucidation and spectral characterizations of Co3O4 nanoflakes.
    Kaviyarasu K; Raja A; Devarajan PA
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Oct; 114():586-91. PubMed ID: 23800777
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchical nanostructures of copper(II) phthalocyanine on electrospun TiO(2) nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties.
    Zhang M; Shao C; Guo Z; Zhang Z; Mu J; Cao T; Liu Y
    ACS Appl Mater Interfaces; 2011 Feb; 3(2):369-77. PubMed ID: 21218852
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Green synthesis of covellite nanocrystals using biologically generated sulfide: potential for bioremediation systems.
    da Costa JP; Girão AV; Lourenço JP; Monteiro OC; Trindade T; Costa MC
    J Environ Manage; 2013 Oct; 128():226-32. PubMed ID: 23747373
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fabrication of novel magnetic CuS/Fe
    Nasseh N; Arghavan FS; Daglioglu N; Asadi A
    Environ Sci Pollut Res Int; 2021 Apr; 28(15):19222-19233. PubMed ID: 33394401
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Magnetic α-Fe2O3/MCM-41 nanocomposites: preparation, characterization, and catalytic activity for methylene blue degradation.
    Ursachi I; Stancu A; Vasile A
    J Colloid Interface Sci; 2012 Jul; 377(1):184-90. PubMed ID: 22520708
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoscale copper sulfide hollow spheres with phase-engineered composition: covellite (CuS), digenite (Cu1.8S), chalcocite (Cu2S).
    Leidinger P; Popescu R; Gerthsen D; Lünsdorf H; Feldmann C
    Nanoscale; 2011 Jun; 3(6):2544-51. PubMed ID: 21556411
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Plasmonic Cu(2-x)S nanocrystals: optical and structural properties of copper-deficient copper(I) sulfides.
    Zhao Y; Pan H; Lou Y; Qiu X; Zhu J; Burda C
    J Am Chem Soc; 2009 Apr; 131(12):4253-61. PubMed ID: 19267472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel preparation of highly photocatalytically active copper chromite nanostructured material via a simple hydrothermal route.
    Beshkar F; Zinatloo-Ajabshir S; Bagheri S; Salavati-Niasari M
    PLoS One; 2017; 12(6):e0158549. PubMed ID: 28582420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytic degradation of isoproturon herbicide over TiO2/Al-MCM-41 composite systems using solar light.
    Phanikrishna Sharma MV; Durga Kumari V; Subrahmanyam M
    Chemosphere; 2008 Jun; 72(4):644-51. PubMed ID: 18396314
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The fabrication of hollow spherical copper sulfide nanoparticle assemblies with 2-hydroxypropyl-beta-cyclodextrin as a template under sonication.
    Xu JZ; Xu S; Geng J; Li GX; Zhu JJ
    Ultrason Sonochem; 2006 Jul; 13(5):451-4. PubMed ID: 16288896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanocomposite prepared from ZnS nanoparticles and molecular sieves nanoparticles by ion exchange method: characterization and its photocatalytic activity.
    Pourahmad A
    Spectrochim Acta A Mol Biomol Spectrosc; 2013 Feb; 103():193-8. PubMed ID: 23261613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and controlled release of mesoporous MCM-41/propranolol hydrochloride composite drug.
    Zhai QZ
    J Microencapsul; 2013; 30(2):173-80. PubMed ID: 22894165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quick photo-Fenton degradation of phenolic compounds by Cu/Al2O3-MCM-41 under visible light irradiation: small particle size, stabilization of copper, easy reducibility of Cu and visible light active material.
    Pradhan AC; Nanda B; Parida KM; Das M
    Dalton Trans; 2013 Jan; 42(2):558-66. PubMed ID: 23090390
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.