These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 24394864)

  • 1. Optimizing nanoporous materials for gas storage.
    Simon CM; Kim J; Lin LC; Martin RL; Haranczyk M; Smit B
    Phys Chem Chem Phys; 2014 Mar; 16(12):5499-513. PubMed ID: 24394864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anomalous isosteric enthalpy of adsorption of methane on zeolite-templated carbon.
    Stadie NP; Murialdo M; Ahn CC; Fultz B
    J Am Chem Soc; 2013 Jan; 135(3):990-3. PubMed ID: 23259456
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Large-scale screening of zeolite structures for CO2 membrane separations.
    Kim J; Abouelnasr M; Lin LC; Smit B
    J Am Chem Soc; 2013 May; 135(20):7545-52. PubMed ID: 23654217
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical prediction of high pressure methane adsorption in porous aromatic frameworks (PAFs).
    Cossi M; Gatti G; Canti L; Tei L; Errahali M; Marchese L
    Langmuir; 2012 Oct; 28(40):14405-14. PubMed ID: 22935012
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico design of porous polymer networks: high-throughput screening for methane storage materials.
    Martin RL; Simon CM; Smit B; Haranczyk M
    J Am Chem Soc; 2014 Apr; 136(13):5006-22. PubMed ID: 24611543
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hydrogen storage in nanoporous carbon materials: myth and facts.
    Kowalczyk P; Hołyst R; Terrones M; Terrones H
    Phys Chem Chem Phys; 2007 Apr; 9(15):1786-92. PubMed ID: 17415489
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adsorption of CO(2), CH(4), N(2)O, and N(2) on MOF-5, MOF-177, and zeolite 5A.
    Saha D; Bao Z; Jia F; Deng S
    Environ Sci Technol; 2010 Mar; 44(5):1820-6. PubMed ID: 20143826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving biogas separation and methane storage with multilayer graphene nanostructure via layer spacing optimization and lithium doping: a molecular simulation investigation.
    Chen JJ; Li WW; Li XL; Yu HQ
    Environ Sci Technol; 2012 Sep; 46(18):10341-8. PubMed ID: 22888826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Statistical thermodynamics models for polyatomic adsorbates: application to adsorption of n-paraffins in 5A zeolite.
    Romá F; Riccardo JL; Ramirez-Pastor AJ
    Langmuir; 2005 Mar; 21(6):2454-9. PubMed ID: 15752039
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Liquid phase calorimetry and adsorption analyses of zeolite beta acidity.
    Lemos de Macedo J; Ferreira Ghesti G; Alves Dias J; Cláudia Loureiro Dias S
    Phys Chem Chem Phys; 2008 Mar; 10(11):1584-92. PubMed ID: 18327315
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic Behaviors of Adsorbed Methane Storage Systems Based on Nanoporous Carbon Adsorbents Prepared from Coconut Shells.
    Men'shchikov IE; Shkolin AV; Strizhenov EM; Khozina EV; Chugaev SS; Shiryaev AA; Fomkin AA; Zherdev AA
    Nanomaterials (Basel); 2020 Nov; 10(11):. PubMed ID: 33198162
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced hydrogen adsorption in boron substituted carbon nanospaces.
    Firlej L; Roszak S; Kuchta B; Pfeifer P; Wexler C
    J Chem Phys; 2009 Oct; 131(16):164702. PubMed ID: 19894965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High performance hydrogen storage from Be-BTB metal-organic framework at room temperature.
    Lim WX; Thornton AW; Hill AJ; Cox BJ; Hill JM; Hill MR
    Langmuir; 2013 Jul; 29(27):8524-33. PubMed ID: 23805913
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Filling pore space in a microporous coordination polymer to improve methane storage performance.
    Tran LD; Feldblyum JI; Wong-Foy AG; Matzger AJ
    Langmuir; 2015 Feb; 31(7):2211-7. PubMed ID: 25621891
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic separation of carbon dioxide and methane on a copper metal-organic framework.
    Bao Z; Alnemrat S; Yu L; Vasiliev I; Ren Q; Lu X; Deng S
    J Colloid Interface Sci; 2011 May; 357(2):504-9. PubMed ID: 21392776
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gas storage in nanoporous materials.
    Morris RE; Wheatley PS
    Angew Chem Int Ed Engl; 2008; 47(27):4966-81. PubMed ID: 18459091
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal-organic frameworks impregnated with magnesium-decorated fullerenes for methane and hydrogen storage.
    Thornton AW; Nairn KM; Hill JM; Hill AJ; Hill MR
    J Am Chem Soc; 2009 Aug; 131(30):10662-9. PubMed ID: 19583258
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design and synthesis of vanadium hydrazide gels for Kubas-type hydrogen adsorption: a new class of hydrogen storage materials.
    Hoang TK; Webb MI; Mai HV; Hamaed A; Walsby CJ; Trudeau M; Antonelli DM
    J Am Chem Soc; 2010 Aug; 132(33):11792-8. PubMed ID: 20681605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic investigations of the process of encapsulation of small hydrocarbons into a cavitand-porphyrin.
    Nakazawa J; Sakae Y; Aida M; Naruta Y
    J Org Chem; 2007 Dec; 72(25):9448-55. PubMed ID: 17979283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Robust Machine Learning Algorithm for the Prediction of Methane Adsorption in Nanoporous Materials.
    Fanourgakis GS; Gkagkas K; Tylianakis E; Klontzas E; Froudakis G
    J Phys Chem A; 2019 Jul; 123(28):6080-6087. PubMed ID: 31264869
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.