These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 24394947)

  • 21. Rhamnolipid biosurfactants decrease the toxicity of chlorinated phenols to Pseudomonas putida DOT-T1E.
    Chrzanowski L; Wick LY; Meulenkamp R; Kaestner M; Heipieper HJ
    Lett Appl Microbiol; 2009 Jun; 48(6):756-62. PubMed ID: 19344356
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Rhamnolipid biosurfactant behavior in solutions.
    Chen G
    J Biomater Sci Polym Ed; 2004; 15(2):229-35. PubMed ID: 15109100
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Adsorption of dirhamnolipid on four microorganisms and the effect on cell surface hydrophobicity.
    Zhong H; Zeng GM; Yuan XZ; Fu HY; Huang GH; Ren FY
    Appl Microbiol Biotechnol; 2007 Nov; 77(2):447-55. PubMed ID: 17899072
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mobility and fate of carbetamide in an agricultural soil.
    Crovetto G; Navalón A; Ballesteros O; Vílchez JL; García-Herruzo F; Rodríguez-Maroto JM
    J Environ Sci Health B; 2009 Nov; 44(8):764-71. PubMed ID: 20183088
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Production of microbial rhamnolipid by Pseudomonas aeruginosa MM1011 for ex situ enhanced oil recovery.
    Amani H; Müller MM; Syldatk C; Hausmann R
    Appl Biochem Biotechnol; 2013 Jul; 170(5):1080-93. PubMed ID: 23640261
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Equilibrium, hysteresis and kinetics of cadmium desorption from sodium-feldspar using rhamnolipid biosurfactant.
    Aşçi Y; Açikel U; Açikel YS
    Environ Technol; 2012 Sep; 33(16-18):1857-68. PubMed ID: 23240179
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of clays, metal oxides, and organic matter on rhamnolipid biosurfactant sorption by soil.
    Ochoa-Loza FJ; Noordman WH; Jannsen DB; Brusseau ML; Maier RM
    Chemosphere; 2007 Jan; 66(9):1634-42. PubMed ID: 16965801
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Rhamnolipid Amidation on Biosurfactant Adsorption Loss and Oil-Washing Efficiency.
    Li Z; Lin J; Wang W; Huang H; Yu D; Li S
    Langmuir; 2022 Mar; 38(8):2435-2444. PubMed ID: 35170312
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Investigation on the reaction of phenolic pollutions to mono-rhamnolipid micelles using MEUF.
    Liu Z; Yu M; Zeng G; Li M; Zhang J; Zhong H; Liu Y; Shao B; Li Z; Wang Z; Liu G; Yang X
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1230-1240. PubMed ID: 27770324
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adsorption of surfactants on a Pseudomonas aeruginosa strain and the effect on cell surface lypohydrophilic property.
    Yuan X; Ren F; Zeng G; Zhong H; Fu H; Liu J; Xu X
    Appl Microbiol Biotechnol; 2007 Oct; 76(5):1189-98. PubMed ID: 17634935
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adsorption and desorption of chlorpyrifos to soils and sediments.
    Gebremariam SY; Beutel MW; Yonge DR; Flury M; Harsh JB
    Rev Environ Contam Toxicol; 2012; 215():123-75. PubMed ID: 22057931
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rhamnolipid morphology and phenanthrene solubility at different pH values.
    Shin KH; Kim KW; Kim JY; Lee KE; Han SS
    J Environ Qual; 2008; 37(2):509-14. PubMed ID: 18268315
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Production of rhamnolipids in solid-state cultivation: Characterization, downstream processing and application in the cleaning of contaminated soils.
    Camilios Neto D; Meira JA; Tiburtius E; Zamora PP; Bugay C; Mitchell DA; Krieger N
    Biotechnol J; 2009 May; 4(5):748-55. PubMed ID: 19452471
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Influence of a Rhamnolipid Biosurfactant on the Transport of Bacteria through a Sandy Soil.
    Bai G; Brusseau ML; Miller RM
    Appl Environ Microbiol; 1997 May; 63(5):1866-73. PubMed ID: 16535601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Adsorption of monorhamnolipid and dirhamnolipid on two Pseudomonas aeruginosa strains and the effect on cell surface hydrophobicity.
    Zhong H; Zeng GM; Liu JX; Xu XM; Yuan XZ; Fu HY; Huang GH; Liu ZF; Ding Y
    Appl Microbiol Biotechnol; 2008 Jun; 79(4):671-7. PubMed ID: 18443784
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of low-concentration rhamnolipid on adsorption of Pseudomonas aeruginosa ATCC 9027 on hydrophilic and hydrophobic surfaces.
    Zhong H; Jiang Y; Zeng G; Liu Z; Liu L; Liu Y; Yang X; Lai M; He Y
    J Hazard Mater; 2015 Mar; 285():383-8. PubMed ID: 25528238
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Stimulating in-soil rhamnolipid production in a bioslurry reactor by limiting nitrogen.
    Hudak AJ; Cassidy DP
    Biotechnol Bioeng; 2004 Dec; 88(7):861-8. PubMed ID: 15538720
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization and micellization of rhamnolipidic fractions and crude extracts produced by Pseudomonas aeruginosa mutant MIG-N146.
    Guo YP; Hu YY; Gu RR; Lin H
    J Colloid Interface Sci; 2009 Mar; 331(2):356-63. PubMed ID: 19100991
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of low-concentration rhamnolipid on transport of Pseudomonas aeruginosa ATCC 9027 in an ideal porous medium with hydrophilic or hydrophobic surfaces.
    Zhong H; Liu G; Jiang Y; Brusseau ML; Liu Z; Liu Y; Zeng G
    Colloids Surf B Biointerfaces; 2016 Mar; 139():244-8. PubMed ID: 26722821
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.