BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 24394952)

  • 1. A method to monitor eye and head tracking movements in college baseball players.
    Fogt NF; Zimmerman AB
    Optom Vis Sci; 2014 Feb; 91(2):200-11. PubMed ID: 24394952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Temporally Coupled Coordination of Eye and Body Movements in Baseball Batting for a Wide Range of Ball Speeds.
    Kishita Y; Ueda H; Kashino M
    Front Sports Act Living; 2020; 2():64. PubMed ID: 33345055
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Gaze-in-wild: A dataset for studying eye and head coordination in everyday activities.
    Kothari R; Yang Z; Kanan C; Bailey R; Pelz JB; Diaz GJ
    Sci Rep; 2020 Feb; 10(1):2539. PubMed ID: 32054884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Properties of Gaze Strategies Based on Eye-Head Coordination in a Ball-Catching Task.
    Ono S; Yoshimura Y; Shinkai R; Kizuka T
    Vision (Basel); 2024 Apr; 8(2):. PubMed ID: 38651441
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Visuomotor coordination with gaze, head and arm movements during table tennis forehand rallies.
    Shinkai R; Ando S; Nonaka Y; Kizuka T; Ono S
    Eur J Sport Sci; 2024 Jun; 24(6):750-757. PubMed ID: 38874996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of prediction and visual tracking strategies during manual interception: An exploration of individual differences.
    Arthur T; Vine S; Wilson M; Harris D
    J Vis; 2024 Jun; 24(6):4. PubMed ID: 38842836
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mobile gaze tracking system for outdoor walking behavioral studies.
    Tomasi M; Pundlik S; Bowers AR; Peli E; Luo G
    J Vis; 2016; 16(3):27. PubMed ID: 26894511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Two Distinct Types of Eye-Head Coupling in Freely Moving Mice.
    Meyer AF; O'Keefe J; Poort J
    Curr Biol; 2020 Jun; 30(11):2116-2130.e6. PubMed ID: 32413309
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distinct eye movement patterns enhance dynamic visual acuity.
    Palidis DJ; Wyder-Hodge PA; Fooken J; Spering M
    PLoS One; 2017; 12(2):e0172061. PubMed ID: 28187157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ACE-DNV: Automatic classification of gaze events in dynamic natural viewing.
    Nejad A; de Haan GA; Heutink J; Cornelissen FW
    Behav Res Methods; 2024 Apr; 56(4):3300-3314. PubMed ID: 38448726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automatic processing of gaze movements to quantify gaze scanning behaviors in a driving simulator.
    Swan G; Goldstein RB; Savage SW; Zhang L; Ahmadi A; Bowers AR
    Behav Res Methods; 2021 Apr; 53(2):487-506. PubMed ID: 32748237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utility of VestAid to Detect Eye-Gaze Accuracy in a Participant Exposed to Directed Energy.
    Whitney SL; Ou V; Hovareshti P; Costa CM; Cassidy AR; Dunlap PM; Roeder S; Holt L; Tolani D; Klatt BN; Hoppes CW
    Mil Med; 2023 Jul; 188(7-8):e1795-e1801. PubMed ID: 36208334
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Longitudinal changes in youth baseball batting based on body rotation and separation.
    Tsutsui T; Sakata J; Sakamaki W; Maemichi T; Torii S
    BMC Sports Sci Med Rehabil; 2023 Nov; 15(1):162. PubMed ID: 38017563
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How soccer players head the ball: a test of Optic Acceleration Cancellation theory with virtual reality.
    McLeod P; Reed N; Gilson S; Glennerster A
    Vision Res; 2008 Jun; 48(13):1479-87. PubMed ID: 18472123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Instant interaction driven adaptive gaze control interface.
    Qian K; Arichi T; Edwards AD; Hajnal JV
    Sci Rep; 2024 May; 14(1):11661. PubMed ID: 38778122
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gaze Behavior and Cognitive Performance on Tasks of Multiple Object Tracking and Multiple Identity Tracking by Handball Players and Non-Athletes.
    Styrkowiec P; Czyż SH; Hyönä J; Li J; Oksama L; Raś M
    Percept Mot Skills; 2024 Jun; 131(3):818-842. PubMed ID: 38437881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Noise estimation for head-mounted 3D binocular eye tracking using Pupil Core eye-tracking goggles.
    Velisar A; Shanidze NM
    Behav Res Methods; 2024 Jan; 56(1):53-79. PubMed ID: 37369939
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Objective Parameters in Attention Deficit Hyperactivity Disorder: Eye and Head Movements.
    Yıldırım Demirdöğen E; Akıncı MA; Bozkurt A; Turan B; Esin İS; Donbaloğlu MA; Bingöl İ; Tümüklü Özyer G; Kılıç U; Dursun OB
    J Atten Disord; 2024 Apr; 28(6):982-991. PubMed ID: 38214185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Small head movements increase and colour noise in data from five video-based P-CR eye trackers.
    Holmqvist K; Örbom SL; Zemblys R
    Behav Res Methods; 2022 Apr; 54(2):845-863. PubMed ID: 34357538
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using Natural Head Movements to Continually Calibrate EOG Signals.
    Nezvadovitz JR; Rao HM
    J Eye Mov Res; 2022; 15(5):. PubMed ID: 37846295
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.