BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 24395200)

  • 1. Accumulation of acidic SK₃ dehydrins in phloem cells of cold- and drought-stressed plants of the Solanaceae.
    Szabala BM; Fudali S; Rorat T
    Planta; 2014 Apr; 239(4):847-63. PubMed ID: 24395200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species.
    Rorat T; Szabala BM; Grygorowicz WJ; Wojtowicz B; Yin Z; Rey P
    Planta; 2006 Jun; 224(1):205-21. PubMed ID: 16404580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A proteinase inhibitor II of Solanum americanum is expressed in phloem.
    Xu ZF; Qi WQ; Ouyang XZ; Yeung E; Chye ML
    Plant Mol Biol; 2001 Dec; 47(6):727-38. PubMed ID: 11785934
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The abundance of a single domain cyclophilin in Solanaceae is regulated as a function of organ type and high temperature and not by other environmental constraints.
    Kiełbowicz-Matuk A; Rey P; Rorat T
    Physiol Plant; 2007 Nov; 131(3):387-98. PubMed ID: 18251878
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The cationic nature of lysine-rich segments modulates the structural and biochemical properties of wild potato FSK
    Szabała BM
    Plant Physiol Biochem; 2023 Jan; 194():480-488. PubMed ID: 36512982
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expression of KS-type dehydrins is primarily regulated by factors related to organ type and leaf developmental stage during vegetative growth.
    Rorat T; Grygorowicz WJ; Irzykowski W; Rey P
    Planta; 2004 Mar; 218(5):878-85. PubMed ID: 14685858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MusaDHN-1, a novel multiple stress-inducible SK(3)-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana.
    Shekhawat UK; Srinivas L; Ganapathi TR
    Planta; 2011 Nov; 234(5):915-32. PubMed ID: 21671068
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dehydrin expression in soybean.
    Yamasaki Y; Koehler G; Blacklock BJ; Randall SK
    Plant Physiol Biochem; 2013 Sep; 70():213-20. PubMed ID: 23792826
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Identification of the pepper SAR8.2 gene as a molecular marker for pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum.
    Lee SC; Hwang BK
    Planta; 2003 Jan; 216(3):387-96. PubMed ID: 12520329
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana.
    Nylander M; Svensson J; Palva ET; Welin BV
    Plant Mol Biol; 2001 Feb; 45(3):263-79. PubMed ID: 11292073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evolutionary history of the heat shock protein 90 (Hsp90) family of 43 plants and characterization of Hsp90s in Solanum tuberosum.
    Li W; Chen Y; Ye M; Wang D; Chen Q
    Mol Biol Rep; 2020 Sep; 47(9):6679-6691. PubMed ID: 32780253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of Stomatal Closure in Plants Exposed to Drought and Cold Stress.
    Agurla S; Gahir S; Munemasa S; Murata Y; Raghavendra AS
    Adv Exp Med Biol; 2018; 1081():215-232. PubMed ID: 30288712
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primary phloem-specific expression of a Zinnia elegans homeobox gene.
    Nishitani C; Demura T; Fukuda H
    Plant Cell Physiol; 2001 Nov; 42(11):1210-8. PubMed ID: 11726705
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dehydrin expression as a potential diagnostic tool for cold stress in white clover.
    Vaseva II; Anders I; Yuperlieva-Mateeva B; Nenkova R; Kostadinova A; Feller U
    Plant Physiol Biochem; 2014 May; 78():43-8. PubMed ID: 24632490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genome-Wide Identification and Expression Profiling of the
    Jin X; Yin X; Ndayambaza B; Zhang Z; Min X; Lin X; Wang Y; Liu W
    DNA Cell Biol; 2019 Oct; 38(10):1056-1068. PubMed ID: 31403329
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genetic Networks in Plant Vascular Development.
    Ruonala R; Ko D; Helariutta Y
    Annu Rev Genet; 2017 Nov; 51():335-359. PubMed ID: 28892639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants.
    Peng Y; Reyes JL; Wei H; Yang Y; Karlson D; Covarrubias AA; Krebs SL; Fessehaie A; Arora R
    Physiol Plant; 2008 Dec; 134(4):583-97. PubMed ID: 19000195
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis.
    Barratt DH; Kölling K; Graf A; Pike M; Calder G; Findlay K; Zeeman SC; Smith AM
    Plant Physiol; 2011 Jan; 155(1):328-41. PubMed ID: 21098675
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Promoters of orthologous Glycine max and Lotus japonicus nodulation autoregulation genes interchangeably drive phloem-specific expression in transgenic plants.
    Nontachaiyapoom S; Scott PT; Men AE; Kinkema M; Schenk PM; Gresshoff PM
    Mol Plant Microbe Interact; 2007 Jul; 20(7):769-80. PubMed ID: 17601165
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dehydrins are highly expressed in overwintering buds and enhance drought and freezing tolerance in Gentiana triflora.
    Imamura T; Higuchi A; Takahashi H
    Plant Sci; 2013 Dec; 213():55-66. PubMed ID: 24157208
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.