These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
201 related articles for article (PubMed ID: 24395200)
1. Accumulation of acidic SK₃ dehydrins in phloem cells of cold- and drought-stressed plants of the Solanaceae. Szabala BM; Fudali S; Rorat T Planta; 2014 Apr; 239(4):847-63. PubMed ID: 24395200 [TBL] [Abstract][Full Text] [Related]
2. Expression of SK3-type dehydrin in transporting organs is associated with cold acclimation in Solanum species. Rorat T; Szabala BM; Grygorowicz WJ; Wojtowicz B; Yin Z; Rey P Planta; 2006 Jun; 224(1):205-21. PubMed ID: 16404580 [TBL] [Abstract][Full Text] [Related]
3. A proteinase inhibitor II of Solanum americanum is expressed in phloem. Xu ZF; Qi WQ; Ouyang XZ; Yeung E; Chye ML Plant Mol Biol; 2001 Dec; 47(6):727-38. PubMed ID: 11785934 [TBL] [Abstract][Full Text] [Related]
4. The abundance of a single domain cyclophilin in Solanaceae is regulated as a function of organ type and high temperature and not by other environmental constraints. Kiełbowicz-Matuk A; Rey P; Rorat T Physiol Plant; 2007 Nov; 131(3):387-98. PubMed ID: 18251878 [TBL] [Abstract][Full Text] [Related]
5. The cationic nature of lysine-rich segments modulates the structural and biochemical properties of wild potato FSK Szabała BM Plant Physiol Biochem; 2023 Jan; 194():480-488. PubMed ID: 36512982 [TBL] [Abstract][Full Text] [Related]
6. Expression of KS-type dehydrins is primarily regulated by factors related to organ type and leaf developmental stage during vegetative growth. Rorat T; Grygorowicz WJ; Irzykowski W; Rey P Planta; 2004 Mar; 218(5):878-85. PubMed ID: 14685858 [TBL] [Abstract][Full Text] [Related]
7. MusaDHN-1, a novel multiple stress-inducible SK(3)-type dehydrin gene, contributes affirmatively to drought- and salt-stress tolerance in banana. Shekhawat UK; Srinivas L; Ganapathi TR Planta; 2011 Nov; 234(5):915-32. PubMed ID: 21671068 [TBL] [Abstract][Full Text] [Related]
9. Identification of the pepper SAR8.2 gene as a molecular marker for pathogen infection, abiotic elicitors and environmental stresses in Capsicum annuum. Lee SC; Hwang BK Planta; 2003 Jan; 216(3):387-96. PubMed ID: 12520329 [TBL] [Abstract][Full Text] [Related]
10. Stress-induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Nylander M; Svensson J; Palva ET; Welin BV Plant Mol Biol; 2001 Feb; 45(3):263-79. PubMed ID: 11292073 [TBL] [Abstract][Full Text] [Related]
11. Evolutionary history of the heat shock protein 90 (Hsp90) family of 43 plants and characterization of Hsp90s in Solanum tuberosum. Li W; Chen Y; Ye M; Wang D; Chen Q Mol Biol Rep; 2020 Sep; 47(9):6679-6691. PubMed ID: 32780253 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of Stomatal Closure in Plants Exposed to Drought and Cold Stress. Agurla S; Gahir S; Munemasa S; Murata Y; Raghavendra AS Adv Exp Med Biol; 2018; 1081():215-232. PubMed ID: 30288712 [TBL] [Abstract][Full Text] [Related]
13. Primary phloem-specific expression of a Zinnia elegans homeobox gene. Nishitani C; Demura T; Fukuda H Plant Cell Physiol; 2001 Nov; 42(11):1210-8. PubMed ID: 11726705 [TBL] [Abstract][Full Text] [Related]
14. Dehydrin expression as a potential diagnostic tool for cold stress in white clover. Vaseva II; Anders I; Yuperlieva-Mateeva B; Nenkova R; Kostadinova A; Feller U Plant Physiol Biochem; 2014 May; 78():43-8. PubMed ID: 24632490 [TBL] [Abstract][Full Text] [Related]
15. Genome-Wide Identification and Expression Profiling of the Jin X; Yin X; Ndayambaza B; Zhang Z; Min X; Lin X; Wang Y; Liu W DNA Cell Biol; 2019 Oct; 38(10):1056-1068. PubMed ID: 31403329 [TBL] [Abstract][Full Text] [Related]
16. Genetic Networks in Plant Vascular Development. Ruonala R; Ko D; Helariutta Y Annu Rev Genet; 2017 Nov; 51():335-359. PubMed ID: 28892639 [TBL] [Abstract][Full Text] [Related]
17. RcDhn5, a cold acclimation-responsive dehydrin from Rhododendron catawbiense rescues enzyme activity from dehydration effects in vitro and enhances freezing tolerance in RcDhn5-overexpressing Arabidopsis plants. Peng Y; Reyes JL; Wei H; Yang Y; Karlson D; Covarrubias AA; Krebs SL; Fessehaie A; Arora R Physiol Plant; 2008 Dec; 134(4):583-97. PubMed ID: 19000195 [TBL] [Abstract][Full Text] [Related]
18. Callose synthase GSL7 is necessary for normal phloem transport and inflorescence growth in Arabidopsis. Barratt DH; Kölling K; Graf A; Pike M; Calder G; Findlay K; Zeeman SC; Smith AM Plant Physiol; 2011 Jan; 155(1):328-41. PubMed ID: 21098675 [TBL] [Abstract][Full Text] [Related]
19. Promoters of orthologous Glycine max and Lotus japonicus nodulation autoregulation genes interchangeably drive phloem-specific expression in transgenic plants. Nontachaiyapoom S; Scott PT; Men AE; Kinkema M; Schenk PM; Gresshoff PM Mol Plant Microbe Interact; 2007 Jul; 20(7):769-80. PubMed ID: 17601165 [TBL] [Abstract][Full Text] [Related]
20. Dehydrins are highly expressed in overwintering buds and enhance drought and freezing tolerance in Gentiana triflora. Imamura T; Higuchi A; Takahashi H Plant Sci; 2013 Dec; 213():55-66. PubMed ID: 24157208 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]