BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

299 related articles for article (PubMed ID: 24395428)

  • 1. Axoplasmic reticulum Ca(2+) release causes secondary degeneration of spinal axons.
    Stirling DP; Cummins K; Wayne Chen SR; Stys P
    Ann Neurol; 2014 Feb; 75(2):220-9. PubMed ID: 24395428
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intracellular calcium release through IP
    Orem BC; Pelisch N; Williams J; Nally JM; Stirling DP
    Neurobiol Dis; 2017 Oct; 106():235-243. PubMed ID: 28709993
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Toll-like receptor 2-mediated alternative activation of microglia is protective after spinal cord injury.
    Stirling DP; Cummins K; Mishra M; Teo W; Yong VW; Stys P
    Brain; 2014 Mar; 137(Pt 3):707-23. PubMed ID: 24369381
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibiting store-operated calcium entry attenuates white matter secondary degeneration following SCI.
    Orem BC; Partain SB; Stirling DP
    Neurobiol Dis; 2020 Mar; 136():104718. PubMed ID: 31846736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The toll-like receptor 2 agonist Pam3CSK4 is neuroprotective after spinal cord injury.
    Stivers NS; Pelisch N; Orem BC; Williams J; Nally JM; Stirling DP
    Exp Neurol; 2017 Aug; 294():1-11. PubMed ID: 28445714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. IP
    Orem BC; Rajaee A; Stirling DP
    Neurobiol Dis; 2020 Dec; 146():105123. PubMed ID: 33011333
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An ex vivo laser-induced spinal cord injury model to assess mechanisms of axonal degeneration in real-time.
    Okada SL; Stivers NS; Stys PK; Stirling DP
    J Vis Exp; 2014 Nov; (93):e52173. PubMed ID: 25490396
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sprouting of axonal collaterals after spinal cord injury is prevented by delayed axonal degeneration.
    Collyer E; Catenaccio A; Lemaitre D; Diaz P; Valenzuela V; Bronfman F; Court FA
    Exp Neurol; 2014 Nov; 261():451-61. PubMed ID: 25079366
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The contribution of activated phagocytes and myelin degeneration to axonal retraction/dieback following spinal cord injury.
    McPhail LT; Stirling DP; Tetzlaff W; Kwiecien JM; Ramer MS
    Eur J Neurosci; 2004 Oct; 20(8):1984-94. PubMed ID: 15450077
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibiting Calcium Release from Ryanodine Receptors Protects Axons after Spinal Cord Injury.
    Orem BC; Rajaee A; Stirling DP
    J Neurotrauma; 2022 Feb; 39(3-4):311-319. PubMed ID: 34913747
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanisms of axonal injury: internodal nanocomplexes and calcium deregulation.
    Stirling DP; Stys PK
    Trends Mol Med; 2010 Apr; 16(4):160-70. PubMed ID: 20207196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In vivo imaging of axonal degeneration and regeneration in the injured spinal cord.
    Kerschensteiner M; Schwab ME; Lichtman JW; Misgeld T
    Nat Med; 2005 May; 11(5):572-7. PubMed ID: 15821747
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel closed-body model of spinal cord injury caused by high-pressure air blasts produces extensive axonal injury and motor impairments.
    del Mar N; von Buttlar X; Yu AS; Guley NH; Reiner A; Honig MG
    Exp Neurol; 2015 Sep; 271():53-71. PubMed ID: 25957630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluation of Injured Axons Using Two-Photon Excited Fluorescence Microscopy after Spinal Cord Contusion Injury in YFP-H Line Mice.
    Horiuchi H; Oshima Y; Ogata T; Morino T; Matsuda S; Miura H; Imamura T
    Int J Mol Sci; 2015 Jul; 16(7):15785-99. PubMed ID: 26184175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Emergence of highly neurofilament-immunoreactive zipper-like axon segments at the transection site in scalpel-cordotomized adult rats.
    Nishio T; Kawaguchi S; Fujiwara H
    Neuroscience; 2008 Jul; 155(1):90-103. PubMed ID: 18571867
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glutamate receptors on myelinated spinal cord axons: I. GluR6 kainate receptors.
    Ouardouz M; Coderre E; Basak A; Chen A; Zamponi GW; Hameed S; Rehak R; Yin X; Trapp BD; Stys PK
    Ann Neurol; 2009 Feb; 65(2):151-9. PubMed ID: 19224535
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Extensive structural remodeling of the injured spinal cord revealed by phosphorylated MAP1B in sprouting axons and degenerating neurons.
    Soares S; Barnat M; Salim C; von Boxberg Y; Ravaille-Veron M; Nothias F
    Eur J Neurosci; 2007 Sep; 26(6):1446-61. PubMed ID: 17880387
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of axonal spheroid formation in central nervous system Wallerian degeneration.
    Beirowski B; Nógrádi A; Babetto E; Garcia-Alias G; Coleman MP
    J Neuropathol Exp Neurol; 2010 May; 69(5):455-72. PubMed ID: 20418780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. General mechanisms of axonal damage and its prevention.
    Stys PK
    J Neurol Sci; 2005 Jun; 233(1-2):3-13. PubMed ID: 15899499
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A recoverable state of axon injury persists for hours after spinal cord contusion in vivo.
    Williams PR; Marincu BN; Sorbara CD; Mahler CF; Schumacher AM; Griesbeck O; Kerschensteiner M; Misgeld T
    Nat Commun; 2014 Dec; 5():5683. PubMed ID: 25511170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.