BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 24395798)

  • 1. Resonant secondary light emission from plasmonic Au nanostructures at high electron temperatures created by pulsed-laser excitation.
    Huang J; Wang W; Murphy CJ; Cahill DG
    Proc Natl Acad Sci U S A; 2014 Jan; 111(3):906-11. PubMed ID: 24395798
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Anti-Stokes Emission from Hot Carriers in Gold Nanorods.
    Cai YY; Sung E; Zhang R; Tauzin LJ; Liu JG; Ostovar B; Zhang Y; Chang WS; Nordlander P; Link S
    Nano Lett; 2019 Feb; 19(2):1067-1073. PubMed ID: 30657694
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light emission from plasmonic nanostructures.
    Cai YY; Tauzin LJ; Ostovar B; Lee S; Link S
    J Chem Phys; 2021 Aug; 155(6):060901. PubMed ID: 34391373
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surface enhanced resonant Raman scattering in hybrid MoSe
    Abid I; Chen W; Yuan J; Najmaei S; Peñafiel EC; Péchou R; Large N; Lou J; Mlayah A
    Opt Express; 2018 Oct; 26(22):29411-29423. PubMed ID: 30470105
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thousand-fold Increase in Plasmonic Light Emission via Combined Electronic and Optical Excitations.
    Cui L; Zhu Y; Nordlander P; Di Ventra M; Natelson D
    Nano Lett; 2021 Mar; 21(6):2658-2665. PubMed ID: 33710898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surface enhanced anti-Stokes one-photon luminescence from single gold nanorods.
    He Y; Xia K; Lu G; Shen H; Cheng Y; Liu YC; Shi K; Xiao YF; Gong Q
    Nanoscale; 2015 Jan; 7(2):577-82. PubMed ID: 25418974
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coherent multiphoton photoelectron emission from single au nanorods: the critical role of plasmonic electric near-field enhancement.
    Grubisic A; Schweikhard V; Baker TA; Nesbitt DJ
    ACS Nano; 2013 Jan; 7(1):87-99. PubMed ID: 23194174
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Excitation Conditions for Surface-Enhanced Hyper Raman Scattering With Biocompatible Gold Nanosubstrates.
    Dusa A; Madzharova F; Kneipp J
    Front Chem; 2021; 9():680905. PubMed ID: 34079791
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled nanoantenna plasmon resonance spectra from two-photon laser excitation.
    Wissert MD; Ilin KS; Siegel M; Lemmer U; Eisler HJ
    Nano Lett; 2010 Oct; 10(10):4161-5. PubMed ID: 20795629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine.
    Jain PK; Huang X; El-Sayed IH; El-Sayed MA
    Acc Chem Res; 2008 Dec; 41(12):1578-86. PubMed ID: 18447366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonlinear inelastic electron scattering from Au nanostructures induced by localized surface plasmon resonance.
    Li Z; Xu C; Liu W; Li M; Chen X
    Sci Rep; 2018 Apr; 8(1):5626. PubMed ID: 29618753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonant plasmon enhancement of light emission from CdSe/CdS nanoplatelets on Au nanodisk arrays.
    Milekhin IA; Anikin KV; Rahaman M; Rodyakina EE; Duda TA; Saidzhonov BM; Vasiliev RB; Dzhagan VM; Milekhin AG; Batsanov SA; Gutakovskii AK; Latyshev AV; Zahn DRT
    J Chem Phys; 2020 Oct; 153(16):164708. PubMed ID: 33138402
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plasmonic Metamaterials for Nanochemistry and Sensing.
    Wang P; Nasir ME; Krasavin AV; Dickson W; Jiang Y; Zayats AV
    Acc Chem Res; 2019 Nov; 52(11):3018-3028. PubMed ID: 31680511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Further enhancement of the near-field on Au nanogap dimers using quasi-dark plasmon modes.
    Shibata K; Fujii S; Sun Q; Miura A; Ueno K
    J Chem Phys; 2020 Mar; 152(10):104706. PubMed ID: 32171196
    [TBL] [Abstract][Full Text] [Related]  

  • 15. SERS signals at the anti Stokes side of the excitation laser in extremely high local optical fields of silver and gold nanoclusters.
    Kneipp K; Kneipp H
    Faraday Discuss; 2006; 132():27-33; discussion 85-94. PubMed ID: 16833105
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of Femtosecond Pulsed Laser-Induced Atomic Redistribution in Bimetallic Au-Pd Nanorods on Optoelectronic and Catalytic Properties.
    Nazemi M; Panikkanvalappil SR; Liao CK; Mahmoud MA; El-Sayed MA
    ACS Nano; 2021 Jun; 15(6):10241-10252. PubMed ID: 34032116
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gold nanorods with finely tunable longitudinal surface plasmon resonance as SERS substrates.
    Smitha SL; Gopchandran KG; Ravindran TR; Prasad VS
    Nanotechnology; 2011 Jul; 22(26):265705. PubMed ID: 21576800
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Pollen Grain Nanostructures: A Three-Dimensional Surface-Enhanced Raman Scattering (SERS)-Active Substrate.
    Hossain MK; Drmosh QA; Mohamedkhair AK
    Chem Asian J; 2021 Jul; 16(13):1807-1819. PubMed ID: 34009749
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Visible light plasmonic heating of Au-ZnO for the catalytic reduction of CO2.
    Wang C; Ranasingha O; Natesakhawat S; Ohodnicki PR; Andio M; Lewis JP; Matranga C
    Nanoscale; 2013 Aug; 5(15):6968-74. PubMed ID: 23794025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optical Asymmetry and Nonlinear Light Scattering from Colloidal Gold Nanorods.
    Lien MB; Kim JY; Han MG; Chang YC; Chang YC; Ferguson HJ; Zhu Y; Herzing AA; Schotland JC; Kotov NA; Norris TB
    ACS Nano; 2017 Jun; 11(6):5925-5932. PubMed ID: 28510416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.