These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24395971)

  • 41. The Effects of Cognitive and Visual Workload on Peripheral Detection in the Detection Response Task.
    van Winsum W
    Hum Factors; 2018 Sep; 60(6):855-869. PubMed ID: 29791188
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Psychomotor control in a virtual laparoscopic surgery training environment: gaze control parameters differentiate novices from experts.
    Wilson M; McGrath J; Vine S; Brewer J; Defriend D; Masters R
    Surg Endosc; 2010 Oct; 24(10):2458-64. PubMed ID: 20333405
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cognitive, sensory and physical factors enabling driving safety in older adults.
    Anstey KJ; Wood J; Lord S; Walker JG
    Clin Psychol Rev; 2005 Jan; 25(1):45-65. PubMed ID: 15596080
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Driver Gaze Behavior Is Different in Normal Curve Driving and when Looking at the Tangent Point.
    Itkonen T; Pekkanen J; Lappi O
    PLoS One; 2015; 10(8):e0135505. PubMed ID: 26287914
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Visual performance in night-time driving conditions.
    Eloholma M; Ketomäki J; Orreveteläinen P; Halonen L
    Ophthalmic Physiol Opt; 2006 May; 26(3):254-63. PubMed ID: 16684152
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Automation transparency: implications of uncertainty communication for human-automation interaction and interfaces.
    Kunze A; Summerskill SJ; Marshall R; Filtness AJ
    Ergonomics; 2019 Mar; 62(3):345-360. PubMed ID: 30501566
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gaze entropy measures detect alcohol-induced driver impairment.
    Shiferaw BA; Crewther DP; Downey LA
    Drug Alcohol Depend; 2019 Nov; 204():107519. PubMed ID: 31479863
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Task-Difficulty Homeostasis in Car Following Models: Experimental Validation Using Self-Paced Visual Occlusion.
    Pekkanen J; Lappi O; Itkonen TH; Summala H
    PLoS One; 2017; 12(1):e0169704. PubMed ID: 28085901
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Optimizing gaze control in three dimensions.
    Tweed D; Haslwanter T; Fetter M
    Science; 1998 Aug; 281(5381):1363-6. PubMed ID: 9721104
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of visual field defects on driving performance: a driving simulator study.
    Coeckelbergh TR; Brouwer WH; Cornelissen FW; Van Wolffelaar P; Kooijman AC
    Arch Ophthalmol; 2002 Nov; 120(11):1509-16. PubMed ID: 12427065
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Controlling steering and judging heading: retinal flow, visual direction, and extraretinal information.
    Wilkie R; Wann J
    J Exp Psychol Hum Percept Perform; 2003 Apr; 29(2):363-78. PubMed ID: 12760621
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Eye movements coordinated with steering benefit performance even when vision is denied.
    Wilson M; Stephenson S; Chattington M; Marple-Horvat DE
    Exp Brain Res; 2007 Jan; 176(3):397-412. PubMed ID: 16896979
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Cheating experience: Guiding novices to adopt the gaze strategies of experts expedites the learning of technical laparoscopic skills.
    Vine SJ; Masters RS; McGrath JS; Bright E; Wilson MR
    Surgery; 2012 Jul; 152(1):32-40. PubMed ID: 22464048
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Comparative Analysis of Kinect-Based and Oculus-Based Gaze Region Estimation Methods in a Driving Simulator.
    González-Ortega D; Díaz-Pernas FJ; Martínez-Zarzuela M; Antón-Rodríguez M
    Sensors (Basel); 2020 Dec; 21(1):. PubMed ID: 33374560
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Redirection of gaze and switching of attention during rapid stepping reactions evoked by unpredictable postural perturbation.
    Zettel JL; Holbeche A; McIlroy WE; Maki BE
    Exp Brain Res; 2005 Sep; 165(3):392-401. PubMed ID: 15883802
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Microsaccades precisely relocate gaze in a high visual acuity task.
    Ko HK; Poletti M; Rucci M
    Nat Neurosci; 2010 Dec; 13(12):1549-53. PubMed ID: 21037583
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Temporal coordination during bimanual reach-to-grasp movements: the role of vision.
    Bruyn JL; Mason AH
    Q J Exp Psychol (Hove); 2009 Jul; 62(7):1328-42. PubMed ID: 19214834
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Age-related changes in gaze sampling strategies during obstacle navigation.
    Domínguez-Zamora FJ; Lajoie K; Miller AB; Marigold DS
    Gait Posture; 2020 Feb; 76():252-258. PubMed ID: 31877549
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Does decreased visual attention to faces underlie difficulties interpreting eye gaze cues in autism?
    Griffin JW; Scherf KS
    Mol Autism; 2020 Jul; 11(1):60. PubMed ID: 32693828
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adaptive gaze control in natural environments.
    Jovancevic-Misic J; Hayhoe M
    J Neurosci; 2009 May; 29(19):6234-8. PubMed ID: 19439601
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.