These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24396523)

  • 1. Size-based hydrodynamic rare tumor cell separation in curved microfluidic channels.
    Sun J; Liu C; Li M; Wang J; Xianyu Y; Hu G; Jiang X
    Biomicrofluidics; 2013; 7(1):11802. PubMed ID: 24396523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Double spiral microchannel for label-free tumor cell separation and enrichment.
    Sun J; Li M; Liu C; Zhang Y; Liu D; Liu W; Hu G; Jiang X
    Lab Chip; 2012 Oct; 12(20):3952-60. PubMed ID: 22868446
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A hydrodynamic-based dual-function microfluidic chip for high throughput discriminating tumor cells.
    Wei YJ; Wei X; Zhang X; Wu CX; Cai JY; Chen ML; Wang JH
    Talanta; 2024 Jun; 273():125884. PubMed ID: 38508128
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design of a novel integrated microfluidic chip for continuous separation of circulating tumor cells from peripheral blood cells.
    Bakhshi MS; Rizwan M; Khan GJ; Duan H; Zhai K
    Sci Rep; 2022 Oct; 12(1):17016. PubMed ID: 36220844
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inertial separation in a contraction-expansion array microchannel.
    Lee MG; Choi S; Park JK
    J Chromatogr A; 2011 Jul; 1218(27):4138-43. PubMed ID: 21176909
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inertial microfluidics for continuous particle separation in spiral microchannels.
    Kuntaegowdanahalli SS; Bhagat AA; Kumar G; Papautsky I
    Lab Chip; 2009 Oct; 9(20):2973-80. PubMed ID: 19789752
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced Separation Efficiency and Purity of Circulating Tumor Cells Based on the Combined Effects of Double Sheath Fluids and Inertial Focusing.
    Li BW; Wei K; Liu QQ; Sun XG; Su N; Li WM; Shang MY; Li JM; Liao D; Li J; Lu WP; Deng SL; Huang Q
    Front Bioeng Biotechnol; 2021; 9():750444. PubMed ID: 34778227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Continuous separation of blood cells in spiral microfluidic devices.
    Nivedita N; Papautsky I
    Biomicrofluidics; 2013; 7(5):54101. PubMed ID: 24404064
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Continuous particle separation in spiral microchannels using Dean flows and differential migration.
    Bhagat AA; Kuntaegowdanahalli SS; Papautsky I
    Lab Chip; 2008 Nov; 8(11):1906-14. PubMed ID: 18941692
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spiral microchannel with ordered micro-obstacles for continuous and highly-efficient particle separation.
    Shen S; Tian C; Li T; Xu J; Chen SW; Tu Q; Yuan MS; Liu W; Wang J
    Lab Chip; 2017 Oct; 17(21):3578-3591. PubMed ID: 28975177
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fundamentals of elasto-inertial particle focusing in curved microfluidic channels.
    Xiang N; Zhang X; Dai Q; Cheng J; Chen K; Ni Z
    Lab Chip; 2016 Jul; 16(14):2626-35. PubMed ID: 27300118
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-throughput particle separation and concentration using spiral inertial filtration.
    Burke JM; Zubajlo RE; Smela E; White IM
    Biomicrofluidics; 2014 Mar; 8(2):024105. PubMed ID: 24738012
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Continuous inertial microparticle and blood cell separation in straight channels with local microstructures.
    Wu Z; Chen Y; Wang M; Chung AJ
    Lab Chip; 2016 Feb; 16(3):532-42. PubMed ID: 26725506
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Label-free cancer cell separation from human whole blood using inertial microfluidics at low shear stress.
    Lee MG; Shin JH; Bae CY; Choi S; Park JK
    Anal Chem; 2013 Jul; 85(13):6213-8. PubMed ID: 23724953
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Triplet Parallelizing Spiral Microfluidic Chip for Continuous Separation of Tumor Cells.
    Chen H
    Sci Rep; 2018 Mar; 8(1):4042. PubMed ID: 29511230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A polymer-film inertial microfluidic sorter fabricated by jigsaw puzzle method for precise size-based cell separation.
    Zhu Z; Wu D; Li S; Han Y; Xiang N; Wang C; Ni Z
    Anal Chim Acta; 2021 Jan; 1143():306-314. PubMed ID: 33384126
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High throughput viscoelastic particle focusing and separation in spiral microchannels.
    Kumar T; Ramachandraiah H; Iyengar SN; Banerjee I; MÃ¥rtensson G; Russom A
    Sci Rep; 2021 Apr; 11(1):8467. PubMed ID: 33875755
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deformability-induced lift force in spiral microchannels for cell separation.
    Guzniczak E; Otto O; Whyte G; Willoughby N; Jimenez M; Bridle H
    Lab Chip; 2020 Feb; 20(3):614-625. PubMed ID: 31915780
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiplex particle focusing via hydrodynamic force in viscoelastic fluids.
    Lee DJ; Brenner H; Youn JR; Song YS
    Sci Rep; 2013 Nov; 3():3258. PubMed ID: 24247252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Throughput, Label-Free Isolation of White Blood Cells from Whole Blood Using Parallel Spiral Microchannels with U-Shaped Cross-Section.
    Mehran A; Rostami P; Saidi MS; Firoozabadi B; Kashaninejad N
    Biosensors (Basel); 2021 Oct; 11(11):. PubMed ID: 34821622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.