These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 24396530)

  • 1. An effective splitting-and-recombination micromixer with self-rotated contact surface for wide Reynolds number range applications.
    Feng X; Ren Y; Jiang H
    Biomicrofluidics; 2013; 7(5):54121. PubMed ID: 24396530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A "twisted" microfluidic mixer suitable for a wide range of flow rate applications.
    Sivashankar S; Agambayev S; Mashraei Y; Li EQ; Thoroddsen ST; Salama KN
    Biomicrofluidics; 2016 May; 10(3):034120. PubMed ID: 27453767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A serpentine laminating micromixer combining splitting/recombination and advection.
    Kim DS; Lee SH; Kwon TH; Ahn CH
    Lab Chip; 2005 Jul; 5(7):739-47. PubMed ID: 15970967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chaotic micromixers using two-layer crossing channels to exhibit fast mixing at low Reynolds numbers.
    Xia HM; Wan SY; Shu C; Chew YT
    Lab Chip; 2005 Jul; 5(7):748-55. PubMed ID: 15970968
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mixing Performance of a Cost-effective Split-and-Recombine 3D Micromixer Fabricated by Xurographic Method.
    Taheri RA; Goodarzi V; Allahverdi A
    Micromachines (Basel); 2019 Nov; 10(11):. PubMed ID: 31744080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Directly Moldable, Highly Compact, and Easy-for-Integration 3D Micromixer with Extraordinary Mixing Performance.
    Wang Z; Yan X; Zhou Q; Wang Q; Zhao D; Wu H
    Anal Chem; 2023 Jun; 95(23):8850-8858. PubMed ID: 37260159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mixing Performance of a Planar Asymmetric Contraction-and-Expansion Micromixer.
    Natsuhara D; Saito R; Okamoto S; Nagai M; Shibata T
    Micromachines (Basel); 2022 Aug; 13(9):. PubMed ID: 36144009
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Three-Dimensional Micromixer Using Oblique Embedded Ridges.
    Li L; Chen Q; Sui G; Qian J; Tsai CT; Cheng X; Jing W
    Micromachines (Basel); 2021 Jul; 12(7):. PubMed ID: 34357216
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 3D Printed Microfluidic Mixers-A Comparative Study on Mixing Unit Performances.
    Enders A; Siller IG; Urmann K; Hoffmann MR; Bahnemann J
    Small; 2019 Jan; 15(2):e1804326. PubMed ID: 30548194
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of passive mixers utilizing microfluidic self-circulation in the mixing chamber.
    Chung YC; Hsu YL; Jen CP; Lu MC; Lin YC
    Lab Chip; 2004 Feb; 4(1):70-7. PubMed ID: 15007444
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel in-plane passive microfluidic mixer with modified Tesla structures.
    Hong CC; Choi JW; Ahn CH
    Lab Chip; 2004 Apr; 4(2):109-13. PubMed ID: 15052349
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Review of Pressure Drop and Mixing Characteristics in Passive Mixers Involving Miscible Liquids.
    Ganguli A; Bhatt V; Yagodnitsyna A; Pinjari D; Pandit A
    Micromachines (Basel); 2024 May; 15(6):. PubMed ID: 38930661
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Monolithic 3D micromixer with an impeller for glass microfluidic systems.
    Kim S; Kim J; Joung YH; Ahn S; Park C; Choi J; Koo C
    Lab Chip; 2020 Nov; 20(23):4474-4485. PubMed ID: 33108430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An easily fabricated three-dimensional threaded lemniscate-shaped micromixer for a wide range of flow rates.
    Rafeie M; Welleweerd M; Hassanzadeh-Barforoushi A; Asadnia M; Olthuis W; Ebrahimi Warkiani M
    Biomicrofluidics; 2017 Jan; 11(1):014108. PubMed ID: 28798843
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel Variable Radius Spiral⁻Shaped Micromixer: From Numerical Analysis to Experimental Validation.
    Mehrdel P; Karimi S; Farré-Lladós J; Casals-Terré J
    Micromachines (Basel); 2018 Oct; 9(11):. PubMed ID: 30715051
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Static micromixers based on large-scale industrial mixer geometry.
    Bertsch A; Heimgartner S; Cousseau P; Renaud P
    Lab Chip; 2001 Sep; 1(1):56-60. PubMed ID: 15100890
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical and Experimental Study on Mixing Performances of Simple and Vortex Micro T-Mixers.
    Ansari MA; Kim KY; Kim SM
    Micromachines (Basel); 2018 Apr; 9(5):. PubMed ID: 30424137
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chaotic mixer using electro-osmosis at finite Péclet number.
    Sugioka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036306. PubMed ID: 20365853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PDMS-based turbulent microfluidic mixer.
    You JB; Kang K; Tran TT; Park H; Hwang WR; Kim JM; Im SG
    Lab Chip; 2015 Apr; 15(7):1727-35. PubMed ID: 25671438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinematic Measurements of Novel Chaotic Micromixers to Enhance Mixing Performances at Low Reynolds Numbers: Comparative Study.
    Naas TT; Hossain S; Aslam M; Rahman A; Hoque ASM; Kim KY; Islam SMR
    Micromachines (Basel); 2021 Mar; 12(4):. PubMed ID: 33800534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.