These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

336 related articles for article (PubMed ID: 24396872)

  • 41. Subolesin knockdown in tick cells provides insights into vaccine protective mechanisms.
    Artigas-Jerónimo S; Villar M; Estrada-Peña A; Alberdi P; de la Fuente J
    Vaccine; 2024 Apr; 42(11):2801-2809. PubMed ID: 38508929
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Advances toward understanding the molecular biology of the Anaplasma-tick interface.
    Kocan KM; de la Fuente J; Blouin EF
    Front Biosci; 2008 May; 13():7032-45. PubMed ID: 18508714
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Tick-Pathogen Interactions and Vector Competence: Identification of Molecular Drivers for Tick-Borne Diseases.
    de la Fuente J; Antunes S; Bonnet S; Cabezas-Cruz A; Domingos AG; Estrada-Peña A; Johnson N; Kocan KM; Mansfield KL; Nijhof AM; Papa A; Rudenko N; Villar M; Alberdi P; Torina A; Ayllón N; Vancova M; Golovchenko M; Grubhoffer L; Caracappa S; Fooks AR; Gortazar C; Rego ROM
    Front Cell Infect Microbiol; 2017; 7():114. PubMed ID: 28439499
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Field studies and cost-effectiveness analysis of vaccination with Gavac against the cattle tick Boophilus microplus.
    de la Fuente J; Rodríguez M; Redondo M; Montero C; García-García JC; Méndez L; Serrano E; Valdés M; Enriquez A; Canales M; Ramos E; Boué O; Machado H; Lleonart R; de Armas CA; Rey S; Rodríguez JL; Artiles M; García L
    Vaccine; 1998 Feb; 16(4):366-73. PubMed ID: 9607057
    [TBL] [Abstract][Full Text] [Related]  

  • 45. ANTIDotE: anti-tick vaccines to prevent tick-borne diseases in Europe.
    Sprong H; Trentelman J; Seemann I; Grubhoffer L; Rego RO; Hajdušek O; Kopáček P; Šíma R; Nijhof AM; Anguita J; Winter P; Rotter B; Havlíková S; Klempa B; Schetters TP; Hovius JW
    Parasit Vectors; 2014 Feb; 7():77. PubMed ID: 24559082
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Using genomic approaches to unravel livestock (host)-tick-pathogen interactions.
    Jensen K; de Miranda Santos IK; Glass EJ
    Trends Parasitol; 2007 Sep; 23(9):439-44. PubMed ID: 17656152
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Targeting the tick protective antigen subolesin reduces vector infestations and pathogen infection by Anaplasma marginale and Babesia bigemina.
    Merino O; Almazán C; Canales M; Villar M; Moreno-Cid JA; Galindo RC; de la Fuente J
    Vaccine; 2011 Nov; 29(47):8575-9. PubMed ID: 21951878
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Anti-tick vaccines in the omics era.
    Valle MR; Guerrero FD
    Front Biosci (Elite Ed); 2018 Jan; 10(1):122-136. PubMed ID: 28930608
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ticks and tick-borne diseases in Asia with special emphasis on China.
    Ahmed J; Yin H; Schnittger L; Jongejan F
    Parasitol Res; 2002 May; 88(13 Suppl 1):S51-5. PubMed ID: 12051612
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The importance of protein glycosylation in development of novel tick vaccine strategies.
    de la Fuente J; Canales M; Kocan KM
    Parasite Immunol; 2006 Dec; 28(12):687-8. PubMed ID: 17096649
    [No Abstract]   [Full Text] [Related]  

  • 51. Characterization of the tick-pathogen interface by quantitative proteomics.
    Villar M; Popara M; Bonzón-Kulichenko E; Ayllón N; Vázquez J; de la Fuente J
    Ticks Tick Borne Dis; 2012 Jun; 3(3):154-8. PubMed ID: 22647712
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Adult tick burdens and habitat use of sympatric wild and domestic ungulates in a mixed ranch in Zimbabwe: no evidence of a direct relationship.
    De Garine-Wichatitsky M
    Ann N Y Acad Sci; 2002 Oct; 969():306-13. PubMed ID: 12381610
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Anti-tick vaccines.
    Willadsen P
    Parasitology; 2004; 129 Suppl():S367-87. PubMed ID: 15938519
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Immunology of the tick-host interaction and the control of ticks and tick-borne diseases.
    Willadsen P; Jongejan F
    Parasitol Today; 1999 Jul; 15(7):258-62. PubMed ID: 10377526
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The role of companion animals in the environmental circulation of tick-borne bacterial pathogens.
    Skotarczak B
    Ann Agric Environ Med; 2018 Sep; 25(3):473-480. PubMed ID: 30260187
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Modelling bovine babesiosis: a tool to simulate scenarios for pathogen spread and to test control measures for the disease.
    Hoch T; Goebel J; Agoulon A; Malandrin L
    Prev Vet Med; 2012 Sep; 106(2):136-42. PubMed ID: 22341037
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Identification of protective antigens by RNA interference for control of the lone star tick, Amblyomma americanum.
    de la Fuente J; Manzano-Roman R; Naranjo V; Kocan KM; Zivkovic Z; Blouin EF; Canales M; Almazán C; Galindo RC; Step DL; Villar M
    Vaccine; 2010 Feb; 28(7):1786-95. PubMed ID: 20018267
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The global importance of ticks.
    Jongejan F; Uilenberg G
    Parasitology; 2004; 129 Suppl():S3-14. PubMed ID: 15938502
    [TBL] [Abstract][Full Text] [Related]  

  • 59. RNA interference for the study and genetic manipulation of ticks.
    de la Fuente J; Kocan KM; Almazán C; Blouin EF
    Trends Parasitol; 2007 Sep; 23(9):427-33. PubMed ID: 17656154
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Vaccinomics Approach for the Identification of Tick Protective Antigens for the Control of
    Contreras M; Villar M; de la Fuente J
    Front Physiol; 2019; 10():977. PubMed ID: 31417430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.