These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 2439694)

  • 1. A stressed intermediate in the formation of stably initiated RNA chains at the Escherichia coli lac UV5 promoter.
    Straney DC; Crothers DM
    J Mol Biol; 1987 Jan; 193(2):267-78. PubMed ID: 2439694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of the open complexes formed by RNA polymerase at the Escherichia coli lac UV5 promoter.
    Straney DC; Crothers DM
    J Mol Biol; 1987 Jan; 193(2):279-92. PubMed ID: 2439695
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intermediates in transcription initiation from the E. coli lac UV5 promoter.
    Straney DC; Crothers DM
    Cell; 1985 Dec; 43(2 Pt 1):449-59. PubMed ID: 2416465
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of an anti-beta monoclonal antibody on the interaction of the Escherichia coli RNA polymerase with the lac and TAC promoters.
    Rockwell P; Krakow JS
    Biochemistry; 1988 May; 27(9):3512-20. PubMed ID: 3291950
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 3. Influences of individual DNA elements within the promoter recognition region on abortive initiation and promoter escape.
    Vo NV; Hsu LM; Kane CM; Chamberlin MJ
    Biochemistry; 2003 Apr; 42(13):3798-811. PubMed ID: 12667071
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 1. RNA chain initiation, abortive initiation, and promoter escape at three bacteriophage promoters.
    Hsu LM; Vo NV; Kane CM; Chamberlin MJ
    Biochemistry; 2003 Apr; 42(13):3777-86. PubMed ID: 12667069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA chain initiation by Escherichia coli RNA polymerase. Structural transitions of the enzyme in early ternary complexes.
    Krummel B; Chamberlin MJ
    Biochemistry; 1989 Sep; 28(19):7829-42. PubMed ID: 2482070
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Topological unwinding of strong and weak promoters by RNA polymerase. A comparison between the lac wild-type and the UV5 sites of Escherichia coli.
    Amouyal M; Buc H
    J Mol Biol; 1987 Jun; 195(4):795-808. PubMed ID: 3309341
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Visualization of the movement of the Escherichia coli RNA polymerase along the lac UV5 promoter during the initiation of the transcription.
    Spassky A
    J Mol Biol; 1986 Mar; 188(1):99-103. PubMed ID: 3519983
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro studies of transcript initiation by Escherichia coli RNA polymerase. 2. Formation and characterization of two distinct classes of initial transcribing complexes.
    Vo NV; Hsu LM; Kane CM; Chamberlin MJ
    Biochemistry; 2003 Apr; 42(13):3787-97. PubMed ID: 12667070
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction of RNA polymerase with lacUV5 promoter DNA during mRNA initiation and elongation. Footprinting, methylation, and rifampicin-sensitivity changes accompanying transcription initiation.
    Carpousis AJ; Gralla JD
    J Mol Biol; 1985 May; 183(2):165-77. PubMed ID: 2409292
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reiterative transcription initiation from galP2 promoter of Escherichia coli.
    Rostoks N; Park S; Choy HE
    Biochim Biophys Acta; 2000 Apr; 1491(1-3):185-95. PubMed ID: 10760580
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The bacterial DNA-binding protein H-NS represses ribosomal RNA transcription by trapping RNA polymerase in the initiation complex.
    Schröder O; Wagner R
    J Mol Biol; 2000 May; 298(5):737-48. PubMed ID: 10801345
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of an anti-alpha monoclonal antibody on interaction of Escherichia coli RNA polymerase with lac promoters.
    Riftina F; DeFalco E; Krakow JS
    Biochemistry; 1990 May; 29(18):4440-6. PubMed ID: 2190632
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanism of transcription initiation and promoter escape by
    Henderson KL; Felth LC; Molzahn CM; Shkel I; Wang S; Chhabra M; Ruff EF; Bieter L; Kraft JE; Record MT
    Proc Natl Acad Sci U S A; 2017 Apr; 114(15):E3032-E3040. PubMed ID: 28348246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Abortive cycling and the release of polymerase for elongation at the sigma 54-dependent glnAp2 promoter.
    Tintut Y; Wang JT; Gralla JD
    J Biol Chem; 1995 Oct; 270(41):24392-8. PubMed ID: 7592652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro interactions of Pseudomonas RNA polymerases with tac and RNA I promoters.
    Fujita M; Amemura A
    Biosci Biotechnol Biochem; 1992 Oct; 56(10):1644-8. PubMed ID: 1282050
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Productive and abortive initiation of transcription in vitro at the lac UV5 promoter.
    Gralla JD; Carpousis AJ; Stefano JE
    Biochemistry; 1980 Dec; 19(25):5864-9. PubMed ID: 6450614
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Insights into the mechanism of initial transcription in Escherichia coli RNA polymerase.
    Samanta S; Martin CT
    J Biol Chem; 2013 Nov; 288(44):31993-2003. PubMed ID: 24047893
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An Escherichia coli RNA polymerase defective in transcription due to its overproduction of abortive initiation products.
    Jin DJ; Turnbough CL
    J Mol Biol; 1994 Feb; 236(1):72-80. PubMed ID: 7508986
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.