BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

309 related articles for article (PubMed ID: 24397749)

  • 1. 1-D structured flexible supercapacitor electrodes with prominent electronic/ionic transport capabilities.
    Kim JS; Shin SS; Han HS; Oh LS; Kim DH; Kim JH; Hong KS; Kim JY
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):268-74. PubMed ID: 24397749
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior.
    Yan J; Khoo E; Sumboja A; Lee PS
    ACS Nano; 2010 Jul; 4(7):4247-55. PubMed ID: 20593844
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors.
    Yang C; Zhou M; Xu Q
    Phys Chem Chem Phys; 2013 Dec; 15(45):19730-40. PubMed ID: 24141452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors.
    Jin Y; Chen H; Chen M; Liu N; Li Q
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3408-16. PubMed ID: 23488813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coaxial RuO₂-ITO nanopillars for transparent supercapacitor application.
    Ryu I; Yang M; Kwon H; Park HK; Do YR; Lee SB; Yim S
    Langmuir; 2014 Feb; 30(6):1704-9. PubMed ID: 24479956
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MnO2 nanolayers on highly conductive TiO(0.54)N(0.46) nanotubes for supercapacitor electrodes with high power density and cyclic stability.
    Wang Z; Li Z; Feng J; Yan S; Luo W; Liu J; Yu T; Zou Z
    Phys Chem Chem Phys; 2014 May; 16(18):8521-8. PubMed ID: 24668150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes.
    Tang P; Han L; Zhang L
    ACS Appl Mater Interfaces; 2014 Jul; 6(13):10506-15. PubMed ID: 24905133
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Glycol assisted synthesis of graphene-MnO2-polyaniline ternary composites for high performance supercapacitor electrodes.
    Mu B; Zhang W; Shao S; Wang A
    Phys Chem Chem Phys; 2014 May; 16(17):7872-80. PubMed ID: 24643731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hierarchically structured MnO2 nanowires supported on hollow Ni dendrites for high-performance supercapacitors.
    Sun Z; Firdoz S; Yap EY; Li L; Lu X
    Nanoscale; 2013 May; 5(10):4379-87. PubMed ID: 23571645
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Core-Shell Composite Fibers for High-Performance Flexible Supercapacitor Electrodes.
    Lu X; Shen C; Zhang Z; Barrios E; Zhai L
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):4041-4049. PubMed ID: 29297674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Uniform Anodically Deposited Film of MnO
    Rafique A; Massa A; Fontana M; Bianco S; Chiodoni A; Pirri CF; Hernández S; Lamberti A
    ACS Appl Mater Interfaces; 2017 Aug; 9(34):28386-28393. PubMed ID: 28787123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Self-Standing Metallic Mesh with MnO
    Liu YH; Jiang ZY; Xu JL
    ACS Appl Mater Interfaces; 2019 Jul; 11(27):24047-24056. PubMed ID: 31192577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophoretic Fabrication of ZnO/CuO and ZnO/CuO/rGO Heterostructures-based Thin Films as Environmental Benign Flexible Electrode for Supercapacitor.
    Shaheen I; Hussain I; Zahra T; Memon R; Alothman AA; Ouladsmane M; Qureshi A; Niazi JH
    Chemosphere; 2023 May; 322():138149. PubMed ID: 36804630
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ electrochemical polymerization of a nanorod-PANI-Graphene composite in a reverse micelle electrolyte and its application in a supercapacitor.
    Hu L; Tu J; Jiao S; Hou J; Zhu H; Fray DJ
    Phys Chem Chem Phys; 2012 Dec; 14(45):15652-6. PubMed ID: 23076399
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constructed uninterrupted charge-transfer pathways in three-dimensional micro/nanointerconnected carbon-based electrodes for high energy-density ultralight flexible supercapacitors.
    He Y; Chen W; Zhou J; Li X; Tang P; Zhang Z; Fu J; Xie E
    ACS Appl Mater Interfaces; 2014 Jan; 6(1):210-8. PubMed ID: 24325338
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Manganese oxide/graphene aerogel composites as an outstanding supercapacitor electrode material.
    Wang CC; Chen HC; Lu SY
    Chemistry; 2014 Jan; 20(2):517-23. PubMed ID: 24327570
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors.
    Ghodbane O; Pascal JL; Favier F
    ACS Appl Mater Interfaces; 2009 May; 1(5):1130-9. PubMed ID: 20355901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Synthesis and Characterization of Self-Standing and Highly Flexible δ-MnO2@CNTs/CNTs Composite Films for Direct Use of Supercapacitor Electrodes.
    Wu P; Cheng S; Yang L; Lin Z; Gui X; Ou X; Zhou J; Yao M; Wang M; Zhu Y; Liu M
    ACS Appl Mater Interfaces; 2016 Sep; 8(36):23721-8. PubMed ID: 27561652
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of modified SiC@SiO2 nanocables/MnO2 and their potential application as hybrid electrodes for supercapacitors.
    Zhang Y; Chen J; Fan H; Chou KC; Hou X
    Dalton Trans; 2015 Dec; 44(46):19974-82. PubMed ID: 26523707
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrodeposition of spinel MnCo₂O₄ nanosheets for supercapacitor applications.
    Sahoo S; Naik KK; Rout CS
    Nanotechnology; 2015 Nov; 26(45):455401. PubMed ID: 26487175
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.