BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 24397978)

  • 21. Mechanistic toxicity study of perfluorooctanoic acid in zebrafish suggests mitochondrial dysfunction to play a key role in PFOA toxicity.
    Hagenaars A; Vergauwen L; Benoot D; Laukens K; Knapen D
    Chemosphere; 2013 May; 91(6):844-56. PubMed ID: 23427857
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Impacts of 17α-ethynylestradiol exposure on metabolite profiles of zebrafish (Danio rerio) liver cells.
    Teng Q; Ekman DR; Huang W; Collette TW
    Aquat Toxicol; 2013 Apr; 130-131():184-91. PubMed ID: 23416411
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Zebrafish: as an integrative model for twenty-first century toxicity testing.
    Sipes NS; Padilla S; Knudsen TB
    Birth Defects Res C Embryo Today; 2011 Sep; 93(3):256-67. PubMed ID: 21932434
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assays with Daphnia magna and Danio rerio as alert systems in aquatic toxicology.
    Martins J; Oliva Teles L; Vasconcelos V
    Environ Int; 2007 Apr; 33(3):414-25. PubMed ID: 17300839
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Molecular targets of TBBPA in zebrafish analysed through integration of genomic and proteomic approaches.
    De Wit M; Keil D; Remmerie N; van der Ven K; van den Brandhof EJ; Knapen D; Witters E; De Coen W
    Chemosphere; 2008 Dec; 74(1):96-105. PubMed ID: 18976794
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Species-specific considerations in using the fish embryo test as an alternative to identify endocrine disruption.
    Schiller V; Zhang X; Hecker M; Schäfers C; Fischer R; Fenske M
    Aquat Toxicol; 2014 Oct; 155():62-72. PubMed ID: 24992288
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards an alternative for the acute fish LC(50) test in chemical assessment: the fish embryo toxicity test goes multi-species -- an update.
    Braunbeck T; Boettcher M; Hollert H; Kosmehl T; Lammer E; Leist E; Rudolf M; Seitz N
    ALTEX; 2005; 22(2):87-102. PubMed ID: 15953964
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Toxicogenomics in hazard assessment of chemicals].
    Kostka G; Liszewska M; Urbanek-Olejnik K
    Rocz Panstw Zakl Hig; 2010; 61(2):119-27. PubMed ID: 20839457
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A graphical systems model and tissue-specific functional gene sets to aid transcriptomic analysis of chemical impacts on the female teleost reproductive axis.
    Villeneuve DL; Garcia-Reyero N; Martinović-Weigelt D; Li Z; Watanabe KH; Orlando EF; Lalone CA; Edwards SW; Burgoon LD; Denslow ND; Perkins EJ; Ankley GT
    Mutat Res; 2012 Aug; 746(2):151-62. PubMed ID: 22227403
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transcriptome dynamics and diversity in the early zebrafish embryo.
    Aanes H; Collas P; Aleström P
    Brief Funct Genomics; 2014 Mar; 13(2):95-105. PubMed ID: 24335756
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Transgenic fluorescent zebrafish Tg(fli1:EGFP)y¹ for the identification of vasotoxicity within the zFET.
    Delov V; Muth-Köhne E; Schäfers C; Fenske M
    Aquat Toxicol; 2014 May; 150():189-200. PubMed ID: 24685623
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Zebrafish embryos as models for embryotoxic and teratological effects of chemicals.
    Yang L; Ho NY; Alshut R; Legradi J; Weiss C; Reischl M; Mikut R; Liebel U; Müller F; Strähle U
    Reprod Toxicol; 2009 Sep; 28(2):245-53. PubMed ID: 19406227
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Use of zebrafish in chemical biology and drug discovery.
    Das BC; McCormick L; Thapa P; Karki R; Evans T
    Future Med Chem; 2013 Nov; 5(17):2103-16. PubMed ID: 24215349
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Zebrafish (Danio rerio) neuromast: promising biological endpoint linking developmental and toxicological studies.
    Froehlicher M; Liedtke A; Groh KJ; Neuhauss SC; Segner H; Eggen RI
    Aquat Toxicol; 2009 Dec; 95(4):307-19. PubMed ID: 19467721
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Environmental toxicology and omics: A question of sex.
    Liang X; Feswick A; Simmons D; Martyniuk CJ
    J Proteomics; 2018 Feb; 172():152-164. PubMed ID: 29037750
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Gene expression endpoints following chronic waterborne copper exposure in a genomic model organism, the zebrafish, Danio rerio.
    Craig PM; Hogstrand C; Wood CM; McClelland GB
    Physiol Genomics; 2009 Dec; 40(1):23-33. PubMed ID: 19789285
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Zebrafish as a genetic model in pre-clinical drug testing and screening.
    Gibert Y; Trengove MC; Ward AC
    Curr Med Chem; 2013; 20(19):2458-66. PubMed ID: 23521675
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Zebrafish developmental screening of the ToxCast™ Phase I chemical library.
    Padilla S; Corum D; Padnos B; Hunter DL; Beam A; Houck KA; Sipes N; Kleinstreuer N; Knudsen T; Dix DJ; Reif DM
    Reprod Toxicol; 2012 Apr; 33(2):174-87. PubMed ID: 22182468
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Zebrafish (Danio rerio) responds differentially to stimulus fish: the effects of sympatric and allopatric predators and harmless fish.
    Bass SL; Gerlai R
    Behav Brain Res; 2008 Jan; 186(1):107-17. PubMed ID: 17854920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Next-generation technologies and data analytical approaches for epigenomics.
    Mensaert K; Denil S; Trooskens G; Van Criekinge W; Thas O; De Meyer T
    Environ Mol Mutagen; 2014 Apr; 55(3):155-70. PubMed ID: 24327356
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.