BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 24397978)

  • 41. Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research.
    Kalueff AV; Echevarria DJ; Homechaudhuri S; Stewart AM; Collier AD; Kaluyeva AA; Li S; Liu Y; Chen P; Wang J; Yang L; Mitra A; Pal S; Chaudhuri A; Roy A; Biswas M; Roy D; Podder A; Poudel MK; Katare DP; Mani RJ; Kyzar EJ; Gaikwad S; Nguyen M; Song C;
    Aquat Toxicol; 2016 Jan; 170():297-309. PubMed ID: 26372090
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Zebrafish as an In Vivo Model to Assess Epigenetic Effects of Ionizing Radiation.
    Kong EY; Cheng SH; Yu KN
    Int J Mol Sci; 2016 Dec; 17(12):. PubMed ID: 27983682
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cell type-specific transcriptomic analysis by thiouracil tagging in zebrafish.
    Erickson T; Nicolson T
    Methods Cell Biol; 2016; 135():309-28. PubMed ID: 27443933
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fish connectivity mapping: linking chemical stressors by their mechanisms of action-driven transcriptomic profiles.
    Wang RL; Biales AD; Garcia-Reyero N; Perkins EJ; Villeneuve DL; Ankley GT; Bencic DC
    BMC Genomics; 2016 Jan; 17():84. PubMed ID: 26822894
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Genomic and Transcriptomic Approaches to Study Cancer in Small Aquarium Fish Models.
    Regneri J; Klotz B; Schartl M
    Adv Genet; 2016; 95():31-63. PubMed ID: 27503353
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Epigenetic memory of environmental organisms: a reflection of lifetime stressor exposures.
    Mirbahai L; Chipman JK
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Apr; 764-765():10-7. PubMed ID: 24141178
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An integrated transcriptomic and proteomic approach characterizing estrogenic and metabolic effects of 17 alpha-ethinylestradiol in zebrafish (Danio rerio).
    De Wit M; Keil D; van der Ven K; Vandamme S; Witters E; De Coen W
    Gen Comp Endocrinol; 2010 Jun; 167(2):190-201. PubMed ID: 20227414
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Toxicogenomics concepts and applications to study hepatic effects of food additives and chemicals.
    Stierum R; Heijne W; Kienhuis A; van Ommen B; Groten J
    Toxicol Appl Pharmacol; 2005 Sep; 207(2 Suppl):179-88. PubMed ID: 16139318
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transcriptional regulation in liver and testis associated with developmental and reproductive effects in male zebrafish exposed to natural mixtures of persistent organic pollutants (POP).
    Nourizadeh-Lillabadi R; Lyche JL; Almaas C; Stavik B; Moe SJ; Aleksandersen M; Berg V; Jakobsen KS; Stenseth NC; Skåre JU; Alestrøm P; Ropstad E
    J Toxicol Environ Health A; 2009; 72(3-4):112-30. PubMed ID: 19184727
    [TBL] [Abstract][Full Text] [Related]  

  • 50. [Zebrafish--useful model for pharmacodynamics and toxicity screening of traditional Chinese medicine].
    Liang A
    Zhongguo Zhong Yao Za Zhi; 2009 Nov; 34(22):2839-42. PubMed ID: 20209941
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Zebrafish for drug toxicity screening: bridging the in vitro cell-based models and in vivo mammalian models.
    Sukardi H; Chng HT; Chan EC; Gong Z; Lam SH
    Expert Opin Drug Metab Toxicol; 2011 May; 7(5):579-89. PubMed ID: 21345150
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Multi-criteria decision analysis of test endpoints for detecting the effects of endocrine active substances in fish full life cycle tests.
    Crane M; Gross M; Matthiessen P; Ankley GT; Axford S; Bjerregaard P; Brown R; Chapman P; Dorgeloh M; Galay-Burgos M; Green J; Hazlerigg C; Janssen J; Lorenzen K; Parrott J; Rufli H; Schäfers C; Seki M; Stolzenberg HC; van der Hoeven N; Vethaak D; Winfield IJ; Zok S; Wheeler J
    Integr Environ Assess Manag; 2010 Jul; 6(3):378-89. PubMed ID: 20821701
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Muscle diseases in the zebrafish.
    Lin YY
    Neuromuscul Disord; 2012 Aug; 22(8):673-84. PubMed ID: 22647769
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Epigenetics in an ecotoxicological context.
    Vandegehuchte MB; Janssen CR
    Mutat Res Genet Toxicol Environ Mutagen; 2014 Apr; 764-765():36-45. PubMed ID: 24004878
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Toxicity characterization of environmental chemicals by the US National Toxicology Program: an overview.
    Chhabra RS; Bucher JR; Wolfe M; Portier C
    Int J Hyg Environ Health; 2003 Aug; 206(4-5):437-45. PubMed ID: 12971699
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Computational toxicology as implemented by the U.S. EPA: providing high throughput decision support tools for screening and assessing chemical exposure, hazard and risk.
    Kavlock R; Dix D
    J Toxicol Environ Health B Crit Rev; 2010 Feb; 13(2-4):197-217. PubMed ID: 20574897
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The developing zebrafish (Danio rerio): a vertebrate model for high-throughput screening of chemical libraries.
    Lessman CA
    Birth Defects Res C Embryo Today; 2011 Sep; 93(3):268-80. PubMed ID: 21932435
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Physical exercise improves learning in zebrafish, Danio rerio.
    Luchiari AC; Chacon DM
    Behav Processes; 2013 Nov; 100():44-7. PubMed ID: 23933376
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Factors to consider in the use of stem cells for pharmaceutic drug development and for chemical safety assessment.
    Trosko JE; Chang CC
    Toxicology; 2010 Mar; 270(1):18-34. PubMed ID: 19948204
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Epigenetic Alteration Shaped by the Environmental Chemical Bisphenol A.
    Qin T; Zhang X; Guo T; Yang T; Gao Y; Hao W; Xiao X
    Front Genet; 2020; 11():618966. PubMed ID: 33505438
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.