These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 24397984)

  • 1. Towards the development of a wearable feedback system for monitoring the activities of the upper-extremities.
    Xiao ZG; Menon C
    J Neuroeng Rehabil; 2014 Jan; 11():2. PubMed ID: 24397984
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Counting Grasping Action Using Force Myography: An Exploratory Study With Healthy Individuals.
    Xiao ZG; Menon C
    JMIR Rehabil Assist Technol; 2017 May; 4(1):e5. PubMed ID: 28582263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Force Myography for Monitoring Grasping in Individuals with Stroke with Mild to Moderate Upper-Extremity Impairments: A Preliminary Investigation in a Controlled Environment.
    Sadarangani GP; Jiang X; Simpson LA; Eng JJ; Menon C
    Front Bioeng Biotechnol; 2017; 5():42. PubMed ID: 28798912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Investigation on the Sampling Frequency of the Upper-Limb Force Myographic Signals.
    Xiao ZG; Menon C
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31141926
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A preliminary investigation on the utility of temporal features of Force Myography in the two-class problem of grasp vs. no-grasp in the presence of upper-extremity movements.
    Sadarangani GP; Menon C
    Biomed Eng Online; 2017 May; 16(1):59. PubMed ID: 28511661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactive wearable systems for upper body rehabilitation: a systematic review.
    Wang Q; Markopoulos P; Yu B; Chen W; Timmermans A
    J Neuroeng Rehabil; 2017 Mar; 14(1):20. PubMed ID: 28284228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Wearable Iontronic FMG for Classification of Muscular Locomotion.
    Zou P; Wang Y; Cai H; Peng T; Pan T; Li R; Fan Y
    IEEE J Biomed Health Inform; 2022 Jul; 26(7):2854-2863. PubMed ID: 35536817
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Wearable Force Myography-Based Armband for Recognition of Upper Limb Gestures.
    Rehman MU; Shah K; Haq IU; Iqbal S; Ismail MA
    Sensors (Basel); 2023 Nov; 23(23):. PubMed ID: 38067728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Optimal Force Myography Placement For Maximizing Locomotion Classification Accuracy in Transfemoral Amputees: A Pilot Study.
    Godiyal AK; Joshi D
    IEEE J Biomed Health Inform; 2021 Apr; 25(4):959-968. PubMed ID: 32776884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Pilot Study on Using Forcemyography to Record Upper-limb Movements for Human-machine Interactive Control.
    Zhang N; Li X; Samuel OW; Huang PG; Fang P; Li G
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():3788-3791. PubMed ID: 30441191
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A proportional control scheme for high density force myography.
    Belyea AT; Englehart KB; Scheme EJ
    J Neural Eng; 2018 Aug; 15(4):046029. PubMed ID: 29845972
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A wrapper framework for feature selection and ELM weights optimization for FMG-based sign recognition.
    Al-Hammouri S; Barioul R; Lweesy K; Ibbini M; Kanoun O
    Comput Biol Med; 2024 Jul; 179():108817. PubMed ID: 39004049
    [TBL] [Abstract][Full Text] [Related]  

  • 13. k-Tournament Grasshopper Extreme Learner for FMG-Based Gesture Recognition.
    Barioul R; Kanoun O
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of Low Back Physiotherapy Exercises With Inertial Sensors and Machine Learning: Algorithm Development and Validation.
    Alfakir A; Arrowsmith C; Burns D; Razmjou H; Hardisty M; Whyne C
    JMIR Rehabil Assist Technol; 2022 Aug; 9(3):e38689. PubMed ID: 35998014
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integration of Task-Based Exoskeleton with an Assist-as-Needed Algorithm for Patient-Centered Elbow Rehabilitation.
    Delgado P; Yihun Y
    Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advances in motion and electromyography based wearable technology for upper extremity function rehabilitation: A review.
    Sethi A; Ting J; Allen M; Clark W; Weber D
    J Hand Ther; 2020; 33(2):180-187. PubMed ID: 32279878
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning model for classifying shoulder pain rehabilitation exercises using IMU sensor.
    Lee K; Kim JH; Hong H; Jeong Y; Ryu H; Kim H; Lee SU
    J Neuroeng Rehabil; 2024 Mar; 21(1):42. PubMed ID: 38539223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wrist-worn wearables based on force myography: on the significance of user anthropometry.
    Delva ML; Lajoie K; Khoshnam M; Menon C
    Biomed Eng Online; 2020 Jun; 19(1):46. PubMed ID: 32532358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pressure signature of forearm as predictor of grip force.
    Wininger M; Kim NH; Craelius W
    J Rehabil Res Dev; 2008; 45(6):883-92. PubMed ID: 19009474
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploration of Force Myography and surface Electromyography in hand gesture classification.
    Jiang X; Merhi LK; Xiao ZG; Menon C
    Med Eng Phys; 2017 Mar; 41():63-73. PubMed ID: 28161107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.