These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 24397984)

  • 21. Comparison of EEG measurement of upper limb movement in motor imagery training system.
    Suwannarat A; Pan-Ngum S; Israsena P
    Biomed Eng Online; 2018 Aug; 17(1):103. PubMed ID: 30071853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of long-term balance training with vibrotactile sensory augmentation among community-dwelling healthy older adults: a randomized preliminary study.
    Bao T; Carender WJ; Kinnaird C; Barone VJ; Peethambaran G; Whitney SL; Kabeto M; Seidler RD; Sienko KH
    J Neuroeng Rehabil; 2018 Jan; 15(1):5. PubMed ID: 29347946
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Estimating Exerted Hand Force via Force Myography to Interact with a Biaxial Stage in Real-Time by Learning Human Intentions: A Preliminary Investigation.
    Zakia U; Menon C
    Sensors (Basel); 2020 Apr; 20(7):. PubMed ID: 32276456
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Review of Force Myography Research and Development.
    Xiao ZG; Menon C
    Sensors (Basel); 2019 Oct; 19(20):. PubMed ID: 31635167
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Real-time modulation of visual feedback on human full-body movements in a virtual mirror: development and proof-of-concept.
    Roosink M; Robitaille N; McFadyen BJ; Hébert LJ; Jackson PL; Bouyer LJ; Mercier C
    J Neuroeng Rehabil; 2015 Jan; 12(1):2. PubMed ID: 25558785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A preliminary investigation assessing the viability of classifying hand postures in seniors.
    Tavakolan M; Xiao ZG; Menon C
    Biomed Eng Online; 2011 Sep; 10():79. PubMed ID: 21906316
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping.
    Markovic M; Schweisfurth MA; Engels LF; Farina D; Dosen S
    J Neuroeng Rehabil; 2018 Sep; 15(1):81. PubMed ID: 30176929
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effects of Visual Feedback Complexity on the Performance of a Movement Task for Rehabilitation.
    Sanford S; Liu M; Selvaggi T; Nataraj R
    J Mot Behav; 2021; 53(2):243-257. PubMed ID: 32496974
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Would a thermal sensor improve arm motion classification accuracy of a single wrist-mounted inertial device?
    Lui J; Menon C
    Biomed Eng Online; 2019 May; 18(1):53. PubMed ID: 31064354
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Vibrotactile grasping force and hand aperture feedback for myoelectric forearm prosthesis users.
    Witteveen HJ; Rietman HS; Veltink PH
    Prosthet Orthot Int; 2015 Jun; 39(3):204-12. PubMed ID: 24567348
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Muscle Activation and Inertial Motion Data for Noninvasive Classification of Activities of Daily Living.
    Totty MS; Wade E
    IEEE Trans Biomed Eng; 2018 May; 65(5):1069-1076. PubMed ID: 28809669
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Exploring the bases for a mixed reality stroke rehabilitation system, Part II: design of interactive feedback for upper limb rehabilitation.
    Lehrer N; Chen Y; Duff M; L Wolf S; Rikakis T
    J Neuroeng Rehabil; 2011 Sep; 8():54. PubMed ID: 21899779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Automated evaluation of physical therapy exercises using multi-template dynamic time warping on wearable sensor signals.
    Yurtman A; Barshan B
    Comput Methods Programs Biomed; 2014 Nov; 117(2):189-207. PubMed ID: 25168775
    [TBL] [Abstract][Full Text] [Related]  

  • 34. High-density force myography: A possible alternative for upper-limb prosthetic control.
    Radmand A; Scheme E; Englehart K
    J Rehabil Res Dev; 2016; 53(4):443-56. PubMed ID: 27532260
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Variability Analysis of Therapeutic Movements using Wearable Inertial Sensors.
    López-Nava IH; Arnrich B; Muñoz-Meléndez A; Güneysu A
    J Med Syst; 2017 Jan; 41(1):7. PubMed ID: 27848176
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A learning-based agent for home neurorehabilitation.
    Lydakis A; Meng Y; Munroe C; Wu YN; Begum M
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1233-1238. PubMed ID: 28813990
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Piezoresistive Array Armband With Reduced Number of Sensors for Hand Gesture Recognition.
    Esposito D; Andreozzi E; Gargiulo GD; Fratini A; D'Addio G; Naik GR; Bifulco P
    Front Neurorobot; 2019; 13():114. PubMed ID: 32009926
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Does force myography recorded at the wrist correlate to resistance load levels during bicep curls?
    Xiao ZG; Menon C
    J Biomech; 2019 Jan; 83():310-314. PubMed ID: 30522877
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Assisting drinking with an affordable BCI-controlled wearable robot and electrical stimulation: a preliminary investigation.
    Looned R; Webb J; Xiao ZG; Menon C
    J Neuroeng Rehabil; 2014 Apr; 11():51. PubMed ID: 24708603
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Role of Muscle Synergies in Real-Time Classification of Upper Limb Motions using Extreme Learning Machines.
    Antuvan CW; Bisio F; Marini F; Yen SC; Cambria E; Masia L
    J Neuroeng Rehabil; 2016 Aug; 13(1):76. PubMed ID: 27527511
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.