These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
240 related articles for article (PubMed ID: 24398520)
1. Redox-dependent stability, protonation, and reactivity of cysteine-bound heme proteins. Zhong F; Lisi GP; Collins DP; Dawson JH; Pletneva EV Proc Natl Acad Sci U S A; 2014 Jan; 111(3):E306-15. PubMed ID: 24398520 [TBL] [Abstract][Full Text] [Related]
2. Neutral thiol as a proximal ligand to ferrous heme iron: implications for heme proteins that lose cysteine thiolate ligation on reduction. Perera R; Sono M; Sigman JA; Pfister TD; Lu Y; Dawson JH Proc Natl Acad Sci U S A; 2003 Apr; 100(7):3641-6. PubMed ID: 12655049 [TBL] [Abstract][Full Text] [Related]
3. Thermodynamic investigation into the mechanisms of proton-coupled electron transfer events in heme protein maquettes. Reddi AR; Reedy CJ; Mui S; Gibney BR Biochemistry; 2007 Jan; 46(1):291-305. PubMed ID: 17198400 [TBL] [Abstract][Full Text] [Related]
4. Exploring second coordination sphere effects in nitric oxide synthase. McQuarters AB; Speelman AL; Chen L; Elmore BO; Fan W; Feng C; Lehnert N J Biol Inorg Chem; 2016 Dec; 21(8):997-1008. PubMed ID: 27686338 [TBL] [Abstract][Full Text] [Related]
5. A Heme Propionate Staples the Structure of Cytochrome Deng Y; Weaver ML; Hoke KR; Pletneva EV Inorg Chem; 2019 Oct; 58(20):14085-14106. PubMed ID: 31589413 [TBL] [Abstract][Full Text] [Related]
6. A Compact Structure of Cytochrome c Trapped in a Lysine-Ligated State: Loop Refolding and Functional Implications of a Conformational Switch. Amacher JF; Zhong F; Lisi GP; Zhu MQ; Alden SL; Hoke KR; Madden DR; Pletneva EV J Am Chem Soc; 2015 Jul; 137(26):8435-49. PubMed ID: 26038984 [TBL] [Abstract][Full Text] [Related]
7. A possible role for the covalent heme-protein linkage in cytochrome c revealed via comparison of N-acetylmicroperoxidase-8 and a synthetic, monohistidine-coordinated heme peptide. Cowley AB; Lukat-Rodgers GS; Rodgers KR; Benson DR Biochemistry; 2004 Feb; 43(6):1656-66. PubMed ID: 14769043 [TBL] [Abstract][Full Text] [Related]
8. Ligation and Reactivity of Methionine-Oxidized Cytochrome c. Zhong F; Pletneva EV Inorg Chem; 2018 May; 57(10):5754-5766. PubMed ID: 29708337 [TBL] [Abstract][Full Text] [Related]
9. Remote Perturbations in Tertiary Contacts Trigger Ligation of Lysine to the Heme Iron in Cytochrome c. Gu J; Shin DW; Pletneva EV Biochemistry; 2017 Jun; 56(23):2950-2966. PubMed ID: 28474881 [TBL] [Abstract][Full Text] [Related]
10. Refolding processes of cytochrome P450cam from ferric and ferrous acid forms to the native conformation. Formations of folding intermediates with non-native heme coordination state. Egawa T; Hishiki T; Ichikawa Y; Kanamori Y; Shimada H; Takahashi S; Kitagawa T; Ishimura Y J Biol Chem; 2004 Jul; 279(31):32008-17. PubMed ID: 15128748 [TBL] [Abstract][Full Text] [Related]
11. Comparing Properties of Common Bioinorganic Ligands with Switchable Variants of Cytochrome Zhong F; Alden SL; Hughes RP; Pletneva EV Inorg Chem; 2022 Jan; 61(3):1207-1227. PubMed ID: 34699724 [TBL] [Abstract][Full Text] [Related]
12. The pH-Induced Selectivity Between Cysteine or Histidine Coordinated Heme in an Artificial α-Helical Metalloprotein. Koebke KJ; Kühl T; Lojou E; Demeler B; Schoepp-Cothenet B; Iranzo O; Pecoraro VL; Ivancich A Angew Chem Int Ed Engl; 2021 Feb; 60(8):3974-3978. PubMed ID: 33215801 [TBL] [Abstract][Full Text] [Related]
13. Engineering cytochrome c peroxidase into cytochrome P450: a proximal effect on heme-thiolate ligation. Sigman JA; Pond AE; Dawson JH; Lu Y Biochemistry; 1999 Aug; 38(34):11122-9. PubMed ID: 10460168 [TBL] [Abstract][Full Text] [Related]
14. Comparison of thioethers and sulfoxides as axial ligands for N-acetylmicroperoxidase-8: implications for oxidation of methionine-80 in cytochrome c. Lushington GH; Cowley AB; Silchenko S; Lukat-Rodgers GS; Rodgers KR; Benson DR Inorg Chem; 2003 Nov; 42(23):7550-9. PubMed ID: 14606851 [TBL] [Abstract][Full Text] [Related]
15. Evaluating the roles of the heme a side chains in cytochrome c oxidase using designed heme proteins. Zhuang J; Reddi AR; Wang Z; Khodaverdian B; Hegg EL; Gibney BR Biochemistry; 2006 Oct; 45(41):12530-8. PubMed ID: 17029408 [TBL] [Abstract][Full Text] [Related]
16. Resonance Raman investigation of imidazole and imidazolate complexes of microperoxidase: characterization of the bis(histidine) axial ligation in c-type cytochromes. Othman S; Le Lirzin A; Desbois A Biochemistry; 1994 Dec; 33(51):15437-48. PubMed ID: 7803408 [TBL] [Abstract][Full Text] [Related]
17. Multiple low spin forms of the cytochrome c ferrihemochrome. EPR spectra of various eukaryotic and prokaryotic cytochromes c. Brautigan DL; Feinberg BA; Hoffman BM; Margoliash E; Preisach J; Blumberg WE J Biol Chem; 1977 Jan; 252(2):574-82. PubMed ID: 13072 [TBL] [Abstract][Full Text] [Related]
18. Structural changes and picosecond to second dynamics of cytochrome c in interaction with nitric oxide in ferrous and ferric redox states. Kruglik SG; Yoo BK; Lambry JC; Martin JL; Negrerie M Phys Chem Chem Phys; 2017 Aug; 19(32):21317-21334. PubMed ID: 28759066 [TBL] [Abstract][Full Text] [Related]
19. Recombinant expression, biophysical characterization, and cardiolipin-induced changes of two Caenorhabditis elegans cytochrome c proteins. Vincelli AJ; Pottinger DS; Zhong F; Hanske J; Rolland SG; Conradt B; Pletneva EV Biochemistry; 2013 Jan; 52(4):653-66. PubMed ID: 23282202 [TBL] [Abstract][Full Text] [Related]
20. The generation of a hyperporphyrin spectrum upon thiol binding to ferric chloroperoxidase. Further evidence of endogenous thiolate ligation to the ferric enzyme. Sono M; Dawson JH; Hager LP J Biol Chem; 1984 Nov; 259(21):13209-16. PubMed ID: 6541651 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]