BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 24398710)

  • 1. Absolute thermodynamic properties of molten salts using the two-phase thermodynamic (2PT) superpositioning method.
    Wang J; Chakraborty B; Eapen J
    Phys Chem Chem Phys; 2014 Feb; 16(7):3062-9. PubMed ID: 24398710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid determination of entropy and free energy of mixtures from molecular dynamics simulations with the two-phase thermodynamic model.
    Lai PK; Hsieh CM; Lin ST
    Phys Chem Chem Phys; 2012 Nov; 14(43):15206-13. PubMed ID: 23041952
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Absolute Entropy and Energy of Carbon Dioxide Using the Two-Phase Thermodynamic Model.
    Huang SN; Pascal TA; Goddard WA; Maiti PK; Lin ST
    J Chem Theory Comput; 2011 Jun; 7(6):1893-901. PubMed ID: 26596450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of liquids: standard molar entropies and heat capacities of common solvents from 2PT molecular dynamics.
    Pascal TA; Lin ST; Goddard WA
    Phys Chem Chem Phys; 2011 Jan; 13(1):169-81. PubMed ID: 21103600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two-phase thermodynamic model for efficient and accurate absolute entropy of water from molecular dynamics simulations.
    Lin ST; Maiti PK; Goddard WA
    J Phys Chem B; 2010 Jun; 114(24):8191-8. PubMed ID: 20504009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Diffusive and quantum effects of water properties in different states of matter.
    Yeh KY; Huang SN; Chen LJ; Lin ST
    J Chem Phys; 2014 Jul; 141(4):044502. PubMed ID: 25084921
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient Computation of Entropy and Other Thermodynamic Properties for Two-Dimensional Systems Using Two-Phase Thermodynamic Model.
    Pannir Sivajothi SS; Lin ST; Maiti PK
    J Phys Chem B; 2019 Jan; 123(1):180-193. PubMed ID: 30525633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of LaMnO3 in molten chlorides: effect of preparation conditions.
    Vradman L; Zana J; Kirschner A; Herskowitz M
    Phys Chem Chem Phys; 2013 Jul; 15(26):10914-20. PubMed ID: 23703217
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reactivity of NH4H2PO4 toward LaCl3 in LiCl-KCl melt flux. Step by step formation of monazite-like LaPO4.
    Hudry D; Rakhmatullin A; Bessada C; Bardez I; Bart F; Jobic S; Deniard P
    Inorg Chem; 2009 Aug; 48(15):7141-50. PubMed ID: 19572720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Two-phase thermodynamic model for computing entropies of liquids reanalyzed.
    Sun T; Xian J; Zhang H; Zhang Z; Zhang Y
    J Chem Phys; 2017 Nov; 147(19):194505. PubMed ID: 29166119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordination and thermophysical properties of select trivalent lanthanides in LiCl-KCl.
    Fuller J; Moon J; Zhang J; Chidambaram D; An Q
    Phys Chem Chem Phys; 2022 Jun; 24(21):13102-13109. PubMed ID: 35588243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coordination and Thermophysical Properties of Transition Metal Chlorocomplexes in LiCl-KCl Eutectic.
    Zhang J; Fuller J; An Q
    J Phys Chem B; 2021 Aug; 125(31):8876-8887. PubMed ID: 34328331
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accurate calculation of zero point energy from molecular dynamics simulations of liquids and their mixtures.
    Tiwari A; Honingh C; Ensing B
    J Chem Phys; 2019 Dec; 151(24):244124. PubMed ID: 31893925
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Accurate schemes for calculation of thermodynamic properties of liquid mixtures from molecular dynamics simulations.
    Caro MA; Laurila T; Lopez-Acevedo O
    J Chem Phys; 2016 Dec; 145(24):244504. PubMed ID: 28049340
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating the influence of molten salt chemistries on the synthesis and stability of perovskites oxides.
    Levitas B; Piligian S; Ireland T; Gopalan S
    RSC Adv; 2021 Sep; 11(47):29156-29163. PubMed ID: 35492064
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Accurate determination of the Gibbs energy of Cu-Zr melts using the thermodynamic integration method in Monte Carlo simulations.
    Harvey JP; Gheribi AE; Chartrand P
    J Chem Phys; 2011 Aug; 135(8):084502. PubMed ID: 21895194
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Computational Design of Low Melting Eutectics of Molten Salts: A Combined Machine Learning and Thermodynamic Modeling Approach.
    Ravichandran A; Honrao S; Xie S; Fonseca E; Lawson JW
    J Phys Chem Lett; 2024 Jan; 15(1):121-126. PubMed ID: 38147653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts.
    Dutcher CS; Wexler AS; Clegg SL
    J Phys Chem A; 2010 Nov; 114(46):12216-30. PubMed ID: 21043484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High temperature (35)Cl nuclear magnetic resonance study of the LiCl-KCl system and the effect of CeCl3 dissolution.
    Zhang H; Farnan I
    Faraday Discuss; 2016 Aug; 190():367-85. PubMed ID: 27212395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multicomponent diffusion in molten LiCl-KCl: dynamical correlations and divergent Maxwell-Stefan diffusivities.
    Chakraborty B; Wang J; Eapen J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):052312. PubMed ID: 23767545
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.