These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 24399098)
1. Highly uniform growth of monolayer graphene by chemical vapor deposition on Cu-Ag alloy catalysts. Shin HA; Ryu J; Cho SP; Lee EK; Cho S; Lee C; Joo YC; Hong BH Phys Chem Chem Phys; 2014 Feb; 16(7):3087-94. PubMed ID: 24399098 [TBL] [Abstract][Full Text] [Related]
2. Chemical vapor deposition of graphene single crystals. Yan Z; Peng Z; Tour JM Acc Chem Res; 2014 Apr; 47(4):1327-37. PubMed ID: 24527957 [TBL] [Abstract][Full Text] [Related]
3. Growth of Single-Layer and Multilayer Graphene on Cu/Ni Alloy Substrates. Huang M; Ruoff RS Acc Chem Res; 2020 Apr; 53(4):800-811. PubMed ID: 32207601 [TBL] [Abstract][Full Text] [Related]
4. Control of thickness uniformity and grain size in graphene films for transparent conductive electrodes. Wu W; Yu Q; Peng P; Liu Z; Bao J; Pei SS Nanotechnology; 2012 Jan; 23(3):035603. PubMed ID: 22173552 [TBL] [Abstract][Full Text] [Related]
5. Polycrystallinity and stacking in CVD graphene. Tsen AW; Brown L; Havener RW; Park J Acc Chem Res; 2013 Oct; 46(10):2286-96. PubMed ID: 23135386 [TBL] [Abstract][Full Text] [Related]
6. Review of chemical vapor deposition of graphene and related applications. Zhang Y; Zhang L; Zhou C Acc Chem Res; 2013 Oct; 46(10):2329-39. PubMed ID: 23480816 [TBL] [Abstract][Full Text] [Related]
7. Growth of wrinkle-free graphene on texture-controlled platinum films and thermal-assisted transfer of large-scale patterned graphene. Choi JK; Kwak J; Park SD; Yun HD; Kim SY; Jung M; Kim SY; Park K; Kang S; Kim SD; Park DY; Lee DS; Hong SK; Shin HJ; Kwon SY ACS Nano; 2015 Jan; 9(1):679-86. PubMed ID: 25494828 [TBL] [Abstract][Full Text] [Related]
8. Rotated domains in chemical vapor deposition-grown monolayer graphene on Cu(111): an angle-resolved photoemission study. Jeon C; Hwang HN; Lee WG; Jung YG; Kim KS; Park CY; Hwang CC Nanoscale; 2013 Sep; 5(17):8210-4. PubMed ID: 23863869 [TBL] [Abstract][Full Text] [Related]
9. Copper-vapor-assisted chemical vapor deposition for high-quality and metal-free single-layer graphene on amorphous SiO2 substrate. Kim H; Song I; Park C; Son M; Hong M; Kim Y; Kim JS; Shin HJ; Baik J; Choi HC ACS Nano; 2013 Aug; 7(8):6575-82. PubMed ID: 23869700 [TBL] [Abstract][Full Text] [Related]
10. Synthesis of high quality monolayer graphene at reduced temperature on hydrogen-enriched evaporated copper (111) films. Tao L; Lee J; Chou H; Holt M; Ruoff RS; Akinwande D ACS Nano; 2012 Mar; 6(3):2319-25. PubMed ID: 22314052 [TBL] [Abstract][Full Text] [Related]
11. Ultrafast Transition of Nonuniform Graphene to High-Quality Uniform Monolayer Films on Liquid Cu. Xin X; Xu C; Zhang D; Liu Z; Ma W; Qian X; Chen ML; Du J; Cheng HM; Ren W ACS Appl Mater Interfaces; 2019 May; 11(19):17629-17636. PubMed ID: 31026138 [TBL] [Abstract][Full Text] [Related]
12. Growth intermediates for CVD graphene on Cu(111): carbon clusters and defective graphene. Niu T; Zhou M; Zhang J; Feng Y; Chen W J Am Chem Soc; 2013 Jun; 135(22):8409-14. PubMed ID: 23675983 [TBL] [Abstract][Full Text] [Related]
13. High-quality monolayer graphene synthesis on Pd foils via the suppression of multilayer growth at grain boundaries. Ma D; Liu M; Gao T; Li C; Sun J; Nie Y; Ji Q; Zhang Y; Song X; Zhang Y; Liu Z Small; 2014 Oct; 10(19):4003-11. PubMed ID: 24913919 [TBL] [Abstract][Full Text] [Related]
14. Low-temperature-grown continuous graphene films from benzene by chemical vapor deposition at ambient pressure. Jang J; Son M; Chung S; Kim K; Cho C; Lee BH; Ham MH Sci Rep; 2015 Dec; 5():17955. PubMed ID: 26658923 [TBL] [Abstract][Full Text] [Related]
15. Chemical vapor deposition of high quality graphene films from carbon dioxide atmospheres. Strudwick AJ; Weber NE; Schwab MG; Kettner M; Weitz RT; Wünsch JR; Müllen K; Sachdev H ACS Nano; 2015 Jan; 9(1):31-42. PubMed ID: 25398132 [TBL] [Abstract][Full Text] [Related]
16. Low-temperature growth of graphene by chemical vapor deposition using solid and liquid carbon sources. Li Z; Wu P; Wang C; Fan X; Zhang W; Zhai X; Zeng C; Li Z; Yang J; Hou J ACS Nano; 2011 Apr; 5(4):3385-90. PubMed ID: 21438574 [TBL] [Abstract][Full Text] [Related]
17. Designed CVD growth of graphene via process engineering. Yan K; Fu L; Peng H; Liu Z Acc Chem Res; 2013 Oct; 46(10):2263-74. PubMed ID: 23869401 [TBL] [Abstract][Full Text] [Related]
18. The Growth of Graphene on Ni-Cu Alloy Thin Films at a Low Temperature and Its Carbon Diffusion Mechanism. Dong Y; Guo S; Mao H; Xu C; Xie Y; Cheng C; Mao X; Deng J; Pan G; Sun J Nanomaterials (Basel); 2019 Nov; 9(11):. PubMed ID: 31744237 [TBL] [Abstract][Full Text] [Related]
19. Self-Terminating Confinement Approach for Large-Area Uniform Monolayer Graphene Directly over Si/SiO Pang J; Mendes RG; Wrobel PS; Wlodarski MD; Ta HQ; Zhao L; Giebeler L; Trzebicka B; Gemming T; Fu L; Liu Z; Eckert J; Bachmatiuk A; Rümmeli MH ACS Nano; 2017 Feb; 11(2):1946-1956. PubMed ID: 28117971 [TBL] [Abstract][Full Text] [Related]
20. Low-temperature chemical vapor deposition growth of graphene from toluene on electropolished copper foils. Zhang B; Lee WH; Piner R; Kholmanov I; Wu Y; Li H; Ji H; Ruoff RS ACS Nano; 2012 Mar; 6(3):2471-6. PubMed ID: 22339048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]