BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 24399110)

  • 1. Hypoxia and CO alter O2 extraction but not peripheral diffusing capacity during maximal aerobic exercise.
    Crocker GH; Jones JH
    Eur J Appl Physiol; 2014 Apr; 114(4):837-45. PubMed ID: 24399110
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Combined effects of inspired oxygen, carbon dioxide, and carbon monoxide on oxygen transport and aerobic capacity.
    Crocker GH; Toth B; Jones JH
    J Appl Physiol (1985); 2013 Sep; 115(5):643-52. PubMed ID: 23813529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Alveolar-capillary diffusion of oxygen in dogs exercising in hypoxia.
    Scotto P; Ichinose Y; Patané L; Meyer M; Piiper J
    Respir Physiol; 1987 Apr; 68(1):1-10. PubMed ID: 3110887
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximum oxygen uptake and arterial blood oxygenation during hypoxic exercise in rats.
    Gonzalez NC; Sokari A; Clancy RL
    J Appl Physiol (1985); 1991 Sep; 71(3):1041-9. PubMed ID: 1757299
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interactive effects of hypoxia, carbon monoxide and acute lung injury on oxygen transport and aerobic capacity.
    Crocker GH; Jones JH
    Respir Physiol Neurobiol; 2016 May; 225():31-7. PubMed ID: 26845454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of an allosteric hemoglobin affinity modulator on arterial blood gases and cardiopulmonary responses during normoxic and hypoxic low-intensity exercise.
    Stewart GM; Chase S; Cross TJ; Wheatley-Guy CM; Joyner MJ; Curry T; Lehrer-Graiwer J; Dufu K; Vlahakis NE; Johnson BD
    J Appl Physiol (1985); 2020 Jun; 128(6):1467-1476. PubMed ID: 32324473
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of hemoglobin P50 in O2 transport during normoxic and hypoxic exercise in the dog.
    Schumacker PT; Suggett AJ; Wagner PD; West JB
    J Appl Physiol (1985); 1985 Sep; 59(3):749-57. PubMed ID: 4055564
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GBT1118, a potent allosteric modifier of hemoglobin O
    Dufu K; Yalcin O; Ao-Ieong ESY; Hutchaleelala A; Xu Q; Li Z; Vlahakis N; Oksenberg D; Lehrer-Graiwer J; Cabrales P
    Am J Physiol Heart Circ Physiol; 2017 Aug; 313(2):H381-H391. PubMed ID: 28526710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of reduction in alveolar-arterial PO2 difference by helium breathing in the exercising horse.
    Erickson BK; Seaman J; Kubo K; Hiraga A; Kai M; Yamaya Y; Wagner PD
    J Appl Physiol (1985); 1994 Jun; 76(6):2794-801. PubMed ID: 7928913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of hematocrit on systemic O2 transport in hypoxic and normoxic exercise in rats.
    Gonzalez NC; Erwig LP; Painter CF; Clancy RL; Wagner PD
    J Appl Physiol (1985); 1994 Sep; 77(3):1341-8. PubMed ID: 7836138
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effects of breathing He-O2 mixtures on maximal oxygen consumption in normoxic and hypoxic men.
    Esposito F; Ferretti G
    J Physiol; 1997 Aug; 503 ( Pt 1)(Pt 1):215-22. PubMed ID: 9288689
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxygen transport to exercising leg in chronic hypoxia.
    Bender PR; Groves BM; McCullough RE; McCullough RG; Huang SY; Hamilton AJ; Wagner PD; Cymerman A; Reeves JT
    J Appl Physiol (1985); 1988 Dec; 65(6):2592-7. PubMed ID: 3215859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ventilation and carbon dioxide exchange in exercising horses: effect of inspired oxygen fraction.
    Pelletier N; Leith DE
    J Appl Physiol (1985); 1995 Feb; 78(2):654-62. PubMed ID: 7759436
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiopulmonary function in exercising bar-headed geese during normoxia and hypoxia.
    Fedde MR; Orr JA; Shams H; Scheid P
    Respir Physiol; 1989 Aug; 77(2):239-52. PubMed ID: 2506620
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Human whole-blood oxygen affinity: effect of carbon monoxide.
    Zwart A; Kwant G; Oeseburg B; Zijlstra WG
    J Appl Physiol Respir Environ Exerc Physiol; 1984 Jul; 57(1):14-20. PubMed ID: 6432749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effect of adding CO2 to hypoxic inspired gas on cerebral blood flow velocity and breathing during incremental exercise.
    Fan JL; Kayser B
    PLoS One; 2013; 8(11):e81130. PubMed ID: 24278389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of chronic sodium cyanate administration on O2 transport and uptake in hypoxic and normoxic exercise.
    McCanse W; Henderson K; Urano T; Kuwahira I; Clancy RL; Gonzalez NC
    J Appl Physiol (1985); 1999 Apr; 86(4):1257-63. PubMed ID: 10194211
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of carbon monoxide on respiration.
    Haab P
    Experientia; 1990 Dec; 46(11-12):1202-6. PubMed ID: 2174793
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of hypoxia on arterial and venous blood levels of oxygen, carbon dioxide, hydrogen ions and lactate during incremental forearm exercise.
    Yoshida T; Udo M; Chida M; Ichioka M; Makiguchi K
    Eur J Appl Physiol Occup Physiol; 1989; 58(7):772-7. PubMed ID: 2500338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mean myoglobin oxygen tension during exercise at maximal oxygen uptake.
    Clark BJ; Coburn RF
    J Appl Physiol; 1975 Jul; 39(1):135-44. PubMed ID: 1150580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.