BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 24399236)

  • 1. Evolution of a new chlorophyll metabolic pathway driven by the dynamic changes in enzyme promiscuous activity.
    Ito H; Tanaka A
    Plant Cell Physiol; 2014 Mar; 55(3):593-603. PubMed ID: 24399236
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In Vitro Enzymatic Activity Assays Implicate the Existence of the Chlorophyll Cycle in Chlorophyll b-Containing Cyanobacteria.
    Lim H; Tanaka A; Tanaka R; Ito H
    Plant Cell Physiol; 2019 Dec; 60(12):2672-2683. PubMed ID: 31392311
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Divinyl chlorophyll(ide) a can be converted to monovinyl chlorophyll(ide) a by a divinyl reductase in rice.
    Wang P; Gao J; Wan C; Zhang F; Xu Z; Huang X; Sun X; Deng X
    Plant Physiol; 2010 Jul; 153(3):994-1003. PubMed ID: 20484022
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HCAR Is a Limitation Factor for Chlorophyll Cycle and Chlorophyll
    Zhao X; Jia T; Hu X
    Biomolecules; 2020 Dec; 10(12):. PubMed ID: 33291365
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of a novel vinyl reductase gene essential for the biosynthesis of monovinyl chlorophyll in Synechocystis sp. PCC6803.
    Ito H; Yokono M; Tanaka R; Tanaka A
    J Biol Chem; 2008 Apr; 283(14):9002-11. PubMed ID: 18230620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The major route for chlorophyll synthesis includes [3,8-divinyl]-chlorophyllide a reduction in Arabidopsis thaliana.
    Nagata N; Tanaka R; Tanaka A
    Plant Cell Physiol; 2007 Dec; 48(12):1803-8. PubMed ID: 17991629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rice 7-Hydroxymethyl Chlorophyll
    Piao W; Han SH; Sakuraba Y; Paek NC
    Mol Cells; 2017 Oct; 40(10):773-786. PubMed ID: 29047257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of a vinyl reductase gene for chlorophyll synthesis in Arabidopsis thaliana and implications for the evolution of Prochlorococcus species.
    Nagata N; Tanaka R; Satoh S; Tanaka A
    Plant Cell; 2005 Jan; 17(1):233-40. PubMed ID: 15632054
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chloroplast biogenesis 92: In situ screening for divinyl chlorophyll(ide) a reductase mutants by spectrofluorometry.
    Kolossov VL; Bohnert HJ; Rebeiz CA
    Anal Biochem; 2006 Jan; 348(2):192-7. PubMed ID: 16337140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolic engineering of the Chl d-dominated cyanobacterium Acaryochloris marina: production of a novel Chl species by the introduction of the chlorophyllide a oxygenase gene.
    Tsuchiya T; Mizoguchi T; Akimoto S; Tomo T; Tamiaki H; Mimuro M
    Plant Cell Physiol; 2012 Mar; 53(3):518-27. PubMed ID: 22302713
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The presence of chlorophyll b in Synechocystis sp. PCC 6803 disturbs tetrapyrrole biosynthesis and enhances chlorophyll degradation.
    Xu H; Vavilin D; Vermaas W
    J Biol Chem; 2002 Nov; 277(45):42726-32. PubMed ID: 12207014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloroplast biogenesis: [4-vinyl] chlorophyllide a reductase is a divinyl chlorophyllide a-specific, NADPH-dependent enzyme.
    Parham R; Rebeiz CA
    Biochemistry; 1992 Sep; 31(36):8460-4. PubMed ID: 1390630
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Divinyl chlorophyll a in the marine eukaryotic protist Alexandrium ostenfeldii (Dinophyceae).
    Rodríguez F; Garrido JL; Sobrino C; Johnsen G; Riobó P; Franco J; Aamot I; Ramilo I; Sanz N; Kremp A
    Environ Microbiol; 2016 Feb; 18(2):627-43. PubMed ID: 26337730
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of the 7-hydroxymethyl chlorophyll a reductase of the chlorophyll cycle in Arabidopsis.
    Meguro M; Ito H; Takabayashi A; Tanaka R; Tanaka A
    Plant Cell; 2011 Sep; 23(9):3442-53. PubMed ID: 21934147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 7-Hydroxymethyl chlorophyll a reductase functions in metabolic channeling of chlorophyll breakdown intermediates during leaf senescence.
    Sakuraba Y; Kim YS; Yoo SC; Hörtensteiner S; Paek NC
    Biochem Biophys Res Commun; 2013 Jan; 430(1):32-7. PubMed ID: 23200839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Artificially acquired chlorophyll b is highly acceptable to the thylakoid-lacking cyanobacterium, Gloeobacter violaceus PCC 7421.
    Araki M; Akimoto S; Mimuro M; Tsuchiya T
    Plant Physiol Biochem; 2014 Aug; 81():155-62. PubMed ID: 24508456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Disruption of the ndhF1 gene affects Chl fluorescence through state transition in the Cyanobacterium Synechocystis sp. PCC 6803, resulting in apparent high efficiency of photosynthesis.
    Ogawa T; Harada T; Ozaki H; Sonoike K
    Plant Cell Physiol; 2013 Jul; 54(7):1164-71. PubMed ID: 23645628
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Making proteins green; biosynthesis of chlorophyll-binding proteins in cyanobacteria.
    Sobotka R
    Photosynth Res; 2014 Feb; 119(1-2):223-32. PubMed ID: 23377990
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Overexpression of 7-hydroxymethyl Chlorophyll
    Liu W; Chen G; Chen J; Jahan MS; Guo S; Wang Y; Sun J
    Plants (Basel); 2021 Aug; 10(9):. PubMed ID: 34579353
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolution of Ycf54-independent chlorophyll biosynthesis in cyanobacteria.
    Chen GE; Hitchcock A; Mareš J; Gong Y; Tichý M; Pilný J; Kovářová L; Zdvihalová B; Xu J; Hunter CN; Sobotka R
    Proc Natl Acad Sci U S A; 2021 Mar; 118(10):. PubMed ID: 33649240
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.