These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 24399247)

  • 41. [Immunological and inflammatory pathogenesis of asthma: the predominance of ontogenic Th2 and its relation to developing immunological mechanisms during fetal and neonatal stages. Therapeutic implications].
    Villarrubia V; González P; Navarro S; Calvo C; de las Heras M; Alvarez-Mon M
    Allergol Immunopathol (Madr); 1999; 27(4):213-31. PubMed ID: 10486445
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Mode of dendritic cell activation: the decisive hand in Th2/Th17 cell differentiation. Implications in asthma severity?
    Vroman H; van den Blink B; Kool M
    Immunobiology; 2015 Feb; 220(2):254-61. PubMed ID: 25245013
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Oral feeding of Lactobacillus bulgaricus N45.10 inhibits the lung inflammation and airway remodeling in murine allergic asthma: Relevance to the Th1/Th2 cytokines and STAT6/T-bet.
    Anatriello E; Cunha M; Nogueira J; Carvalho JL; Sá AK; Miranda M; Castro-Faria-Neto H; Keller AC; Aimbire F
    Cell Immunol; 2019 Jul; 341():103928. PubMed ID: 31178059
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Allergy and asthma: classic TH2 diseases (?).
    Liu AH
    Allergy Asthma Proc; 2000; 21(4):227-30. PubMed ID: 10951889
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of T2 inflammation biomarkers in severe asthma.
    Parulekar AD; Diamant Z; Hanania NA
    Curr Opin Pulm Med; 2016 Jan; 22(1):59-68. PubMed ID: 26574724
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The Cytokines of Asthma.
    Lambrecht BN; Hammad H; Fahy JV
    Immunity; 2019 Apr; 50(4):975-991. PubMed ID: 30995510
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Understanding asthma pathogenesis: linking innate and adaptive immunity.
    Eisenbarth SC; Cassel S; Bottomly K
    Curr Opin Pediatr; 2004 Dec; 16(6):659-66. PubMed ID: 15548929
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Severe asthma phenotypes and endotypes.
    Agache I
    Semin Immunol; 2019 Dec; 46():101301. PubMed ID: 31466925
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Innate lymphoid cells in asthma: pathophysiological insights from murine models to human asthma phenotypes.
    Jonckheere AC; Bullens DMA; Seys SF
    Curr Opin Allergy Clin Immunol; 2019 Feb; 19(1):53-60. PubMed ID: 30516548
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Asthma: new developments concerning immune mechanisms, diagnosis and treatment.
    Effros RM; Nagaraj H
    Curr Opin Pulm Med; 2007 Jan; 13(1):37-43. PubMed ID: 17133123
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Respiratory syncytial virus (RSV) evades the human adaptive immune system by skewing the Th1/Th2 cytokine balance toward increased levels of Th2 cytokines and IgE, markers of allergy--a review.
    Becker Y
    Virus Genes; 2006 Oct; 33(2):235-52. PubMed ID: 16972040
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Effects of anticytokine therapy in a mouse model of chronic asthma.
    Kumar RK; Herbert C; Webb DC; Li L; Foster PS
    Am J Respir Crit Care Med; 2004 Nov; 170(10):1043-8. PubMed ID: 15306533
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Subcutaneous and Sublingual Immunotherapy in a Mouse Model of Allergic Asthma.
    Hesse L; Nawijn MC
    Methods Mol Biol; 2017; 1559():137-168. PubMed ID: 28063043
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Group 2 innate lymphoid cells and asthma.
    Kabata H; Moro K; Koyasu S; Asano K
    Allergol Int; 2015 Jul; 64(3):227-34. PubMed ID: 26117253
    [TBL] [Abstract][Full Text] [Related]  

  • 55. T-helper type 2 cell-directed therapy for asthma.
    Cohn L; Ray A
    Pharmacol Ther; 2000 Nov; 88(2):187-96. PubMed ID: 11150597
    [TBL] [Abstract][Full Text] [Related]  

  • 56. D-pinitol regulates Th1/Th2 balance via suppressing Th2 immune response in ovalbumin-induced asthma.
    Lee JS; Lee CM; Jeong YI; Jung ID; Kim BH; Seong EY; Kim JI; Choi IW; Chung HY; Park YM
    FEBS Lett; 2007 Jan; 581(1):57-64. PubMed ID: 17174308
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Contribution of IL-18-induced innate T cell activation to airway inflammation with mucus hypersecretion and airway hyperresponsiveness.
    Ishikawa Y; Yoshimoto T; Nakanishi K
    Int Immunol; 2006 Jun; 18(6):847-55. PubMed ID: 16611648
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Regulatory T-lymphocytes in asthma.
    van Oosterhout AJ; Bloksma N
    Eur Respir J; 2005 Nov; 26(5):918-32. PubMed ID: 16264056
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Regulation of Th1/Th2 cells in asthma development: a mathematical model.
    Kim Y; Lee S; Kim YS; Lawler S; Gho YS; Kim YK; Hwang HJ
    Math Biosci Eng; 2013 Aug; 10(4):1095-133. PubMed ID: 23906204
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Dynamic role of epithelium-derived cytokines in asthma.
    Bartemes KR; Kita H
    Clin Immunol; 2012 Jun; 143(3):222-35. PubMed ID: 22534317
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.