BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 24399860)

  • 1. A pressure-gradient mechanism for vortex shedding in constricted channels.
    Boghosian ME; Cassel KW
    Phys Fluids (1994); 2013 Dec; 25(12):123603. PubMed ID: 24399860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical simulation of unsteady laminar flow through a tilting disk heart valve: prediction of vortex shedding.
    Huang ZJ; Merkle CL; Abdallah S; Tarbell JM
    J Biomech; 1994 Apr; 27(4):391-402. PubMed ID: 8188720
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the ejection-induced instability in Navier-Stokes solutions of unsteady separation.
    Obabko AV; Cassel KW
    Philos Trans A Math Phys Eng Sci; 2005 May; 363(1830):1189-98. PubMed ID: 16105779
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Numerical investigation of flow and scour around a vertical circular cylinder.
    Baykal C; Sumer BM; Fuhrman DR; Jacobsen NG; Fredsøe J
    Philos Trans A Math Phys Eng Sci; 2015 Jan; 373(2033):. PubMed ID: 25512595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large eddy simulation in a rotary blood pump: Viscous shear stress computation and comparison with unsteady Reynolds-averaged Navier-Stokes simulation.
    Torner B; Konnigk L; Hallier S; Kumar J; Witte M; Wurm FH
    Int J Artif Organs; 2018 Nov; 41(11):752-763. PubMed ID: 29898615
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Parameter study of simplified dragonfly airfoil geometry at Reynolds number of 6000.
    Levy DE; Seifert A
    J Theor Biol; 2010 Oct; 266(4):691-702. PubMed ID: 20673771
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-dimensional simulation of blood flow in an abdominal aortic aneurysm--steady and unsteady flow cases.
    Taylor TW; Yamaguchi T
    J Biomech Eng; 1994 Feb; 116(1):89-97. PubMed ID: 8189719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Validation of a closing procedure for fourth-order RANS turbulence models with DNS data in an incompressible zero-pressure-gradient turbulent boundary layer.
    Poroseva SV; Kaiser BE; Sillero JA; Murman SM
    Int J Heat Fluid Flow; 2015 Dec; 56():71-79. PubMed ID: 30220749
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow dynamics in models of intracranial terminal aneurysms.
    Valencia A
    Mech Chem Biosyst; 2004 Sep; 1(3):221-31. PubMed ID: 16783935
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct numerical simulation of vortex-induced instability for a zero-pressure-gradient boundary layer.
    Sengupta A; Suman VK; Sengupta TK
    Phys Rev E; 2019 Sep; 100(3-1):033118. PubMed ID: 31640075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Three-dimensional steady flow through a bifurcation.
    Yung CN; De Witt KJ; Keith TG
    J Biomech Eng; 1990 May; 112(2):189-97. PubMed ID: 2345450
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuing invariant solutions towards the turbulent flow.
    Parente E; Farano M; Robinet JC; De Palma P; Cherubini S
    Philos Trans A Math Phys Eng Sci; 2022 Jun; 380(2226):20210031. PubMed ID: 35527631
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Steady flow through a constricted cylinder by multiparticle collision dynamics.
    Bedkihal S; Kumaradas JC; Rohlf K
    Biomech Model Mechanobiol; 2013 Oct; 12(5):929-39. PubMed ID: 23179247
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of vortex flow in a modulated channel.
    Abu-Ramadan E; Khayat RE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 2):026305. PubMed ID: 17358420
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of flow induced sound generated by cross flow past finite length circular cylinders.
    Karthik K; Vengadesan S; Bhattacharyya SK
    J Acoust Soc Am; 2018 Jan; 143(1):260. PubMed ID: 29390777
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A passive Stokes flow rectifier for Newtonian fluids.
    Mehboudi A; Yeom J
    Sci Rep; 2021 May; 11(1):10182. PubMed ID: 33986400
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Sensitivity Analysis for the Flow Past Obstacles Problem with Respect to the Reynolds Number.
    Ito K; Li Z; Qiao Z
    Adv Appl Math Mech; 2012 Feb; 4(1):21-35. PubMed ID: 24910780
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Origins of Vortex Shedding in Two-dimensional Incompressible Flows.
    Boghosian ME; Cassel KW
    Theor Comput Fluid Dyn; 2016 Dec; 30(6):511-527. PubMed ID: 27795617
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Generalizations of incompressible and compressible Navier-Stokes equations to fractional time and multi-fractional space.
    Kavvas ML; Ercan A
    Sci Rep; 2022 Nov; 12(1):19337. PubMed ID: 36369242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Screening effects in flow through rough channels.
    Andrade JS; Araújo AD; Filoche M; Sapoval B
    Phys Rev Lett; 2007 May; 98(19):194101. PubMed ID: 17677621
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.