These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
238 related articles for article (PubMed ID: 24399947)
1. Identifying and quantifying main components of physiological noise in functional near infrared spectroscopy on the prefrontal cortex. Kirilina E; Yu N; Jelzow A; Wabnitz H; Jacobs AM; Tachtsidis I Front Hum Neurosci; 2013; 7():864. PubMed ID: 24399947 [TBL] [Abstract][Full Text] [Related]
2. The physiological origin of task-evoked systemic artefacts in functional near infrared spectroscopy. Kirilina E; Jelzow A; Heine A; Niessing M; Wabnitz H; Brühl R; Ittermann B; Jacobs AM; Tachtsidis I Neuroimage; 2012 May; 61(1):70-81. PubMed ID: 22426347 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous fNIRS and thermal infrared imaging during cognitive task reveal autonomic correlates of prefrontal cortex activity. Pinti P; Cardone D; Merla A Sci Rep; 2015 Dec; 5():17471. PubMed ID: 26632763 [TBL] [Abstract][Full Text] [Related]
4. Denoising of neuronal signal from mixed systemic low-frequency oscillation using peripheral measurement as noise regressor in near-infrared imaging. Sutoko S; Chan YL; Obata A; Sato H; Maki A; Numata T; Funane T; Atsumori H; Kiguchi M; Tang TB; Li Y; Frederick BD; Tong Y Neurophotonics; 2019 Jan; 6(1):015001. PubMed ID: 30662924 [TBL] [Abstract][Full Text] [Related]
5. Characterization of the relative contributions from systemic physiological noise to whole-brain resting-state functional near-infrared spectroscopy data using single-channel independent component analysis. Aarabi A; Huppert TJ Neurophotonics; 2016 Apr; 3(2):025004. PubMed ID: 27335886 [TBL] [Abstract][Full Text] [Related]
6. Reconstructing functional near-infrared spectroscopy (fNIRS) signals impaired by extra-cranial confounds: an easy-to-use filter method. Haeussinger FB; Dresler T; Heinzel S; Schecklmann M; Fallgatter AJ; Ehlis AC Neuroimage; 2014 Jul; 95():69-79. PubMed ID: 24657779 [TBL] [Abstract][Full Text] [Related]
7. Separating heart and brain: on the reduction of physiological noise from multichannel functional near-infrared spectroscopy (fNIRS) signals. Bauernfeind G; Wriessnegger SC; Daly I; Müller-Putz GR J Neural Eng; 2014 Oct; 11(5):056010. PubMed ID: 25111822 [TBL] [Abstract][Full Text] [Related]
8. Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI. Erdoğan SB; Yücel MA; Akın A Neuroimage; 2014 Feb; 87():490-504. PubMed ID: 24148922 [TBL] [Abstract][Full Text] [Related]
9. Wavelet-based method for removing global physiological noise in functional near-infrared spectroscopy. Duan L; Zhao Z; Lin Y; Wu X; Luo Y; Xu P Biomed Opt Express; 2018 Aug; 9(8):3805-3820. PubMed ID: 30338157 [TBL] [Abstract][Full Text] [Related]
10. A Motion Artifact Correction Procedure for fNIRS Signals Based on Wavelet Transform and Infrared Thermography Video Tracking. Perpetuini D; Cardone D; Filippini C; Chiarelli AM; Merla A Sensors (Basel); 2021 Jul; 21(15):. PubMed ID: 34372353 [TBL] [Abstract][Full Text] [Related]
11. Detectability of hemodynamic oscillations in cerebral cortex through functional near-infrared spectroscopy: a simulation study. Contini L; Amendola C; Contini D; Torricelli A; Spinelli L; Re R Neurophotonics; 2024 Jul; 11(3):035001. PubMed ID: 38962430 [TBL] [Abstract][Full Text] [Related]
12. The impact of physiological noise on hemodynamic-derived estimates of directed functional connectivity. Schumacher FK; Steinborn C; Weiller C; Schelter BO; Reinhard M; Kaller CP Brain Struct Funct; 2019 Dec; 224(9):3145-3157. PubMed ID: 31515679 [TBL] [Abstract][Full Text] [Related]
13. An Information-Theoretic Approach to Quantitative Analysis of the Correspondence Between Skin Blood Flow and Functional Near-Infrared Spectroscopy Measurement in Prefrontal Cortex Activity. Keshmiri S; Sumioka H; Okubo M; Ishiguro H Front Neurosci; 2019; 13():79. PubMed ID: 30828287 [TBL] [Abstract][Full Text] [Related]
14. Systemic physiology augmented functional near-infrared spectroscopy: a powerful approach to study the embodied human brain. Scholkmann F; Tachtsidis I; Wolf M; Wolf U Neurophotonics; 2022 Jul; 9(3):030801. PubMed ID: 35832785 [TBL] [Abstract][Full Text] [Related]
15. Multivariate Kalman filter regression of confounding physiological signals for real-time classification of fNIRS data. Ortega-Martinez A; Von Lühmann A; Farzam P; Rogers D; Mugler EM; Boas DA; Yücel MA Neurophotonics; 2022 Apr; 9(2):025003. PubMed ID: 35692628 [No Abstract] [Full Text] [Related]
16. Accurate hemodynamic response estimation by removal of stimulus-evoked superficial response in fNIRS signals. Galli A; Brigadoi S; Giorgi G; Sparacino G; Narduzzi C J Neural Eng; 2021 Mar; 18(3):. PubMed ID: 33440365 [No Abstract] [Full Text] [Related]
18. The Temporal Confounding Effects of Extra-cerebral Contamination Factors on the Hemodynamic Signal Measured by Functional Near-Infrared Spectroscopy. Zarei M; Ansari MA; Zare K J Lasers Med Sci; 2019; 10(Suppl 1):S73-S81. PubMed ID: 32021678 [No Abstract] [Full Text] [Related]
19. Time domain functional NIRS imaging for human brain mapping. Torricelli A; Contini D; Pifferi A; Caffini M; Re R; Zucchelli L; Spinelli L Neuroimage; 2014 Jan; 85 Pt 1():28-50. PubMed ID: 23747285 [TBL] [Abstract][Full Text] [Related]
20. Motion Artifacts Correction from Single-Channel EEG and fNIRS Signals Using Novel Wavelet Packet Decomposition in Combination with Canonical Correlation Analysis. Hossain MS; Chowdhury MEH; Reaz MBI; Ali SHM; Bakar AAA; Kiranyaz S; Khandakar A; Alhatou M; Habib R; Hossain MM Sensors (Basel); 2022 Apr; 22(9):. PubMed ID: 35590859 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]