These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24399966)

  • 1. Neural system prediction and identification challenge.
    Vlachos I; Zaytsev YV; Spreizer S; Aertsen A; Kumar A
    Front Neuroinform; 2013; 7():43. PubMed ID: 24399966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying the pulsed neuron networks' structures by a nonlinear Granger causality method.
    Zhu MJ; Dong CY; Chen XY; Ren JW; Zhao XY
    BMC Neurosci; 2020 Feb; 21(1):7. PubMed ID: 32050908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A configurable simulation environment for the efficient simulation of large-scale spiking neural networks on graphics processors.
    Nageswaran JM; Dutt N; Krichmar JL; Nicolau A; Veidenbaum AV
    Neural Netw; 2009; 22(5-6):791-800. PubMed ID: 19615853
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Efficient parameter calibration and real-time simulation of large-scale spiking neural networks with GeNN and NEST.
    Schmitt FJ; Rostami V; Nawrot MP
    Front Neuroinform; 2023; 17():941696. PubMed ID: 36844916
    [TBL] [Abstract][Full Text] [Related]  

  • 5. SNAVA-A real-time multi-FPGA multi-model spiking neural network simulation architecture.
    Sripad A; Sanchez G; Zapata M; Pirrone V; Dorta T; Cambria S; Marti A; Krishnamourthy K; Madrenas J
    Neural Netw; 2018 Jan; 97():28-45. PubMed ID: 29054036
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toward neuroprosthetic real-time communication from in silico to biological neuronal network via patterned optogenetic stimulation.
    Mosbacher Y; Khoyratee F; Goldin M; Kanner S; Malakai Y; Silva M; Grassia F; Simon YB; Cortes J; Barzilai A; Levi T; Bonifazi P
    Sci Rep; 2020 May; 10(1):7512. PubMed ID: 32371937
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rethinking the performance comparison between SNNS and ANNS.
    Deng L; Wu Y; Hu X; Liang L; Ding Y; Li G; Zhao G; Li P; Xie Y
    Neural Netw; 2020 Jan; 121():294-307. PubMed ID: 31586857
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competitive Learning in a Spiking Neural Network: Towards an Intelligent Pattern Classifier.
    Lobov SA; Chernyshov AV; Krilova NP; Shamshin MO; Kazantsev VB
    Sensors (Basel); 2020 Jan; 20(2):. PubMed ID: 31963143
    [TBL] [Abstract][Full Text] [Related]  

  • 9. PyNEST: A Convenient Interface to the NEST Simulator.
    Eppler JM; Helias M; Muller E; Diesmann M; Gewaltig MO
    Front Neuroinform; 2008; 2():12. PubMed ID: 19198667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Scalable Weight-Free Learning Algorithm for Regulatory Control of Cell Activity in Spiking Neuronal Networks.
    Zhang X; Foderaro G; Henriquez C; Ferrari S
    Int J Neural Syst; 2018 Mar; 28(2):1750015. PubMed ID: 28270025
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An efficient automated parameter tuning framework for spiking neural networks.
    Carlson KD; Nageswaran JM; Dutt N; Krichmar JL
    Front Neurosci; 2014; 8():10. PubMed ID: 24550771
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Bio-inspired spiking neural network for nonlinear systems control.
    Pérez J; Cabrera JA; Castillo JJ; Velasco JM
    Neural Netw; 2018 Aug; 104():15-25. PubMed ID: 29702424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward Robust Cognitive 3D Brain-Inspired Cross-Paradigm System.
    Ben Abdallah A; Dang KN
    Front Neurosci; 2021; 15():690208. PubMed ID: 34248491
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A review of learning in biologically plausible spiking neural networks.
    Taherkhani A; Belatreche A; Li Y; Cosma G; Maguire LP; McGinnity TM
    Neural Netw; 2020 Feb; 122():253-272. PubMed ID: 31726331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inferring neuronal network functional connectivity with directed information.
    Cai Z; Neveu CL; Baxter DA; Byrne JH; Aazhang B
    J Neurophysiol; 2017 Aug; 118(2):1055-1069. PubMed ID: 28468991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. NEVESIM: event-driven neural simulation framework with a Python interface.
    Pecevski D; Kappel D; Jonke Z
    Front Neuroinform; 2014; 8():70. PubMed ID: 25177291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. NEST Desktop, an Educational Application for Neuroscience.
    Spreizer S; Senk J; Rotter S; Diesmann M; Weyers B
    eNeuro; 2021; 8(6):. PubMed ID: 34764188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interfacing in silico and in vitro neuronal networks.
    Bruzzone A; Pasquale V; Nowak P; Tessadori J; Massobrio P; Chiappalone M
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3391-4. PubMed ID: 26737020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design and validation of a real-time spiking-neural-network decoder for brain-machine interfaces.
    Dethier J; Nuyujukian P; Ryu SI; Shenoy KV; Boahen K
    J Neural Eng; 2013 Jun; 10(3):036008. PubMed ID: 23574919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human Neocortical Neurosolver (HNN), a new software tool for interpreting the cellular and network origin of human MEG/EEG data.
    Neymotin SA; Daniels DS; Caldwell B; McDougal RA; Carnevale NT; Jas M; Moore CI; Hines ML; Hämäläinen M; Jones SR
    Elife; 2020 Jan; 9():. PubMed ID: 31967544
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.