These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

277 related articles for article (PubMed ID: 24400002)

  • 21. Roles of the regulatory proteins FlhF and FlhG in the Vibrio cholerae flagellar transcription hierarchy.
    Correa NE; Peng F; Klose KE
    J Bacteriol; 2005 Sep; 187(18):6324-32. PubMed ID: 16159765
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Lateral flagellar antigen of Vibrio alginolyticus and Vibrio harveyi: existence of serovars common to the two species.
    Shinoda S; Nakahara N; Uchida E; Hiraga M
    Microbiol Immunol; 1985; 29(3):173-82. PubMed ID: 4010543
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A high-throughput screening assay for inhibitors of bacterial motility identifies a novel inhibitor of the Na+-driven flagellar motor and virulence gene expression in Vibrio cholerae.
    Rasmussen L; White EL; Pathak A; Ayala JC; Wang H; Wu JH; Benitez JA; Silva AJ
    Antimicrob Agents Chemother; 2011 Sep; 55(9):4134-43. PubMed ID: 21709090
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces.
    Atsumi T; McCarter L; Imae Y
    Nature; 1992 Jan; 355(6356):182-4. PubMed ID: 1309599
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Flagella-Driven Motility of Bacteria.
    Nakamura S; Minamino T
    Biomolecules; 2019 Jul; 9(7):. PubMed ID: 31337100
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Polar flagellar motility of the Vibrionaceae.
    McCarter LL
    Microbiol Mol Biol Rev; 2001 Sep; 65(3):445-62, table of contents. PubMed ID: 11528005
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression.
    Kawagishi I; Imagawa M; Imae Y; McCarter L; Homma M
    Mol Microbiol; 1996 May; 20(4):693-9. PubMed ID: 8793868
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surfing Motility: a Conserved yet Diverse Adaptation among Motile Bacteria.
    Sun E; Liu S; Hancock REW
    J Bacteriol; 2018 Dec; 200(23):. PubMed ID: 30224438
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemotactic motility is required for invasion of the host by the fish pathogen Vibrio anguillarum.
    O'Toole R; Milton DL; Wolf-Watz H
    Mol Microbiol; 1996 Feb; 19(3):625-37. PubMed ID: 8830252
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of two outer membrane proteins, FlgO and FlgP, that influence vibrio cholerae motility.
    Martinez RM; Dharmasena MN; Kirn TJ; Taylor RK
    J Bacteriol; 2009 Sep; 191(18):5669-79. PubMed ID: 19592588
    [TBL] [Abstract][Full Text] [Related]  

  • 31. vpaH, a gene encoding a novel histone-like nucleoid structure-like protein that was possibly horizontally acquired, regulates the biogenesis of lateral flagella in trh-positive Vibrio parahaemolyticus TH3996.
    Park KS; Arita M; Iida T; Honda T
    Infect Immun; 2005 Sep; 73(9):5754-61. PubMed ID: 16113292
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Live-cell fluorescence imaging reveals dynamic production and loss of bacterial flagella.
    Zhuang XY; Guo S; Li Z; Zhao Z; Kojima S; Homma M; Wang P; Lo CJ; Bai F
    Mol Microbiol; 2020 Aug; 114(2):279-291. PubMed ID: 32259388
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemotactic Behaviors of Vibrio cholerae Cells.
    Kawagishi I; Nishiyama SI
    Methods Mol Biol; 2017; 1593():259-271. PubMed ID: 28389961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Development of monoclonal antibodies that identify Vibrio species commonly isolated from infections of humans, fish, and shellfish.
    Chen D; Hanna PJ; Altmann K; Smith A; Moon P; Hammond LS
    Appl Environ Microbiol; 1992 Nov; 58(11):3694-700. PubMed ID: 1482190
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Chemotactic control of the two flagellar systems of Vibrio parahaemolyticus.
    Sar N; McCarter L; Simon M; Silverman M
    J Bacteriol; 1990 Jan; 172(1):334-41. PubMed ID: 2294089
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functional role of a conserved aspartic acid residue in the motor of the Na(+)-driven flagellum from Vibrio cholerae.
    Vorburger T; Stein A; Ziegler U; Kaim G; Steuber J
    Biochim Biophys Acta; 2009 Oct; 1787(10):1198-204. PubMed ID: 19501041
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Putative channel components for the fast-rotating sodium-driven flagellar motor of a marine bacterium.
    Asai Y; Kojima S; Kato H; Nishioka N; Kawagishi I; Homma M
    J Bacteriol; 1997 Aug; 179(16):5104-10. PubMed ID: 9260952
    [TBL] [Abstract][Full Text] [Related]  

  • 38.
    Zhu S; Nishikino T; Takekawa N; Terashima H; Kojima S; Imada K; Homma M; Liu J
    J Bacteriol; 2020 Jan; 202(4):. PubMed ID: 31767780
    [TBL] [Abstract][Full Text] [Related]  

  • 39. H-NS represses transcription of the flagellin gene lafA of lateral flagella in Vibrio parahaemolyticus.
    Wang Y; Zhang Y; Yin Z; Wang J; Zhu Y; Peng H; Zhou D; Qi Z; Yang W
    Can J Microbiol; 2018 Jan; 64(1):69-74. PubMed ID: 29091745
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Achievements in bacterial flagellar research with focus on Vibrio species.
    Homma M; Nishikino T; Kojima S
    Microbiol Immunol; 2022 Feb; 66(2):75-95. PubMed ID: 34842307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.