These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 24400317)

  • 1. H2O2-dependent substrate oxidation by an engineered diiron site in a bacterial hemerythrin.
    Okamoto Y; Onoda A; Sugimoto H; Takano Y; Hirota S; Kurtz DM; Shiro Y; Hayashi T
    Chem Commun (Camb); 2014 Apr; 50(26):3421-3. PubMed ID: 24400317
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure, exogenous ligand binding, and redox properties of an engineered diiron active site in a bacterial hemerythrin.
    Okamoto Y; Onoda A; Sugimoto H; Takano Y; Hirota S; Kurtz DM; Shiro Y; Hayashi T
    Inorg Chem; 2013 Nov; 52(22):13014-20. PubMed ID: 24187962
    [TBL] [Abstract][Full Text] [Related]  

  • 3. X-ray crystal structures of reduced rubrerythrin and its azide adduct: a structure-based mechanism for a non-heme diiron peroxidase.
    Jin S; Kurtz DM; Liu ZJ; Rose J; Wang BC
    J Am Chem Soc; 2002 Aug; 124(33):9845-55. PubMed ID: 12175244
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural basis for O2 sensing by the hemerythrin-like domain of a bacterial chemotaxis protein: substrate tunnel and fluxional N terminus.
    Isaza CE; Silaghi-Dumitrescu R; Iyer RB; Kurtz DM; Chan MK
    Biochemistry; 2006 Aug; 45(30):9023-31. PubMed ID: 16866347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and spectroscopic studies of non-heme diiron(III) species with a terminal hydroperoxide ligand: models for hemerythrin.
    Mizoguchi TJ; Kuzelka J; Spingler B; DuBois JL; Davydov RM; Hedman B; Hodgson KO; Lippard SJ
    Inorg Chem; 2001 Aug; 40(18):4662-73. PubMed ID: 11511213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hemerythrin-like domain in a bacterial chemotaxis protein.
    Xiong J; Kurtz DM; Ai J; Sanders-Loehr J
    Biochemistry; 2000 May; 39(17):5117-25. PubMed ID: 10819979
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-resolution crystal structures of Desulfovibrio vulgaris (Hildenborough) nigerythrin: facile, redox-dependent iron movement, domain interface variability, and peroxidase activity in the rubrerythrins.
    Iyer RB; Silaghi-Dumitrescu R; Kurtz DM; Lanzilotta WN
    J Biol Inorg Chem; 2005 Jun; 10(4):407-16. PubMed ID: 15895271
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanistic studies on oxidation of hydrogen peroxide by an oxo-bridged diiron complex in aqueous acidic media.
    Das S; Bhattacharyya J; Mukhopadhyay S
    Dalton Trans; 2008 Dec; (46):6634-40. PubMed ID: 19030627
    [TBL] [Abstract][Full Text] [Related]  

  • 9. X-ray crystal structure of Desulfovibrio vulgaris rubrerythrin with zinc substituted into the [Fe(SCys)4] site and alternative diiron site structures.
    Jin S; Kurtz DM; Liu ZJ; Rose J; Wang BC
    Biochemistry; 2004 Mar; 43(11):3204-13. PubMed ID: 15023070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cryo-crystallographic time course for peroxide reduction by rubrerythrin from Pyrococcus furiosus.
    Dillard BD; Demick JM; Adams MW; Lanzilotta WN
    J Biol Inorg Chem; 2011 Aug; 16(6):949-59. PubMed ID: 21647777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification and Characterization of a Redox Sensor Phosphodiesterase from
    Kitanishi K; Igarashi J; Matsuoka A; Unno M
    Biochemistry; 2020 Mar; 59(8):983-991. PubMed ID: 32045213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conversion of non-functional to functional iron following reconstitution of hemerythrin.
    Zhang JH; Kurtz DM; Xia YM; Debrunner PG
    Biochim Biophys Acta; 1992 Aug; 1122(3):293-8. PubMed ID: 1504090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel diiron complex as a functional model for hemerythrin.
    Arii H; Nagatomo S; Kitagawa T; Miwa T; Jitsukawa K; Einaga H; Masuda H
    J Inorg Biochem; 2000 Nov; 82(1-4):153-62. PubMed ID: 11132622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Avoiding high-valent iron intermediates: superoxide reductase and rubrerythrin.
    Kurtz DM
    J Inorg Biochem; 2006 Apr; 100(4):679-93. PubMed ID: 16504301
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states.
    Rosenzweig AC; Nordlund P; Takahara PM; Frederick CA; Lippard SJ
    Chem Biol; 1995 Jun; 2(6):409-18. PubMed ID: 9383443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Geometry of the soluble methane monooxygenase catalytic diiron center in two oxidation states.
    Rosenzweig AC; Nordlund P; Takahara PM; Frederick CA; Lippard SJ
    Chem Biol; 1995 Sep; 2(9):409-18. PubMed ID: 9432288
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Reactivity patterns for redox reactions of monomer forms of myoglobin, hemocyanin and hemerythrin.
    Zhang BJ; Andrew CR; Tomkinson NP; Sykes AG
    Biochim Biophys Acta; 1992 Sep; 1102(2):245-52. PubMed ID: 1390826
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure and spectroscopic studies of a stable mixed-valent state of the hemerythrin-like domain of a bacterial chemotaxis protein.
    Onoda A; Okamoto Y; Sugimoto H; Shiro Y; Hayashi T
    Inorg Chem; 2011 Jun; 50(11):4892-9. PubMed ID: 21528842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reversible dioxygen binding to hemerythrin.
    Wirstam M; Lippard SJ; Friesner RA
    J Am Chem Soc; 2003 Apr; 125(13):3980-7. PubMed ID: 12656634
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myohemerythrin from the sipunculid, Phascolopsis gouldii: purification, properties and amino acid sequence.
    Long RC; Zhang JH; Kurtz DM; Negri A; Tedeschi G; Bonomi F
    Biochim Biophys Acta; 1992 Jul; 1122(2):136-42. PubMed ID: 1322702
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.