These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 24400505)

  • 1. Terrestrial distribution of pond-breeding salamanders around an isolated wetland.
    Scott DE; Komoroski MJ; Croshaw DA; Dixon PM
    Ecology; 2013 Nov; 94(11):2537-46. PubMed ID: 24400505
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Amphibian lipid levels at metamorphosis correlate to post-metamorphic terrestrial survival.
    Scott DE; Casey ED; Donovan MF; Lynch TK
    Oecologia; 2007 Sep; 153(3):521-32. PubMed ID: 17530291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demographic consequences of terrestrial habitat loss for pool-breeding amphibians: predicting extinction risks associated with inadequate size of buffer zones.
    Harper EB; Rittenhouse TA; Semlitsch RD
    Conserv Biol; 2008 Oct; 22(5):1205-15. PubMed ID: 18717698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy flow and subsidies associated with the complex life cycle of ambystomatid salamanders in ponds and adjacent forest in southern Illinois.
    Regester KJ; Lips KR; Whiles MR
    Oecologia; 2006 Mar; 147(2):303-14. PubMed ID: 16200399
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Using the Phenology of Pond-Breeding Amphibians to Develop Conservation Strategies.
    Paton PWC; Crouch WB
    Conserv Biol; 2002 Feb; 16(1):194-204. PubMed ID: 35701957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking the evolution of habitat choice to ecosystem functioning: direct and indirect effects of pond-reproducing fire salamanders on aquatic-terrestrial subsidies.
    Reinhardt T; Steinfartz S; Paetzold A; Weitere M
    Oecologia; 2013 Sep; 173(1):281-91. PubMed ID: 23358795
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hatching asynchrony, survival, and the fitness of alternative adult morphs in Ambystoma talpoideum.
    Ryan TJ; Plague GR
    Oecologia; 2004 Jun; 140(1):46-51. PubMed ID: 15127287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of copper exposure on hatching success and early larval survival in marbled salamanders, Ambystoma opacum.
    Soteropoulos DL; Lance SL; Flynn RW; Scott DE
    Environ Toxicol Chem; 2014 Jul; 33(7):1631-7. PubMed ID: 24729474
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Migratory orientation by marbled salamanders (Ambystoma opacum) near a breeding area.
    Shoop CR; Doty TL
    Behav Biol; 1972 Feb; 7(7):131-6. PubMed ID: 5043701
    [No Abstract]   [Full Text] [Related]  

  • 10. Genomic data detect corresponding signatures of population size change on an ecological time scale in two salamander species.
    Nunziata SO; Lance SL; Scott DE; Lemmon EM; Weisrock DW
    Mol Ecol; 2017 Feb; 26(4):1060-1074. PubMed ID: 28026889
    [TBL] [Abstract][Full Text] [Related]  

  • 11. An Experimental Test of Buffer Utility as a Technique for Managing Pool-Breeding Amphibians.
    Powell JS; Babbitt KJ
    PLoS One; 2015; 10(7):e0133642. PubMed ID: 26196129
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Are wetland regulations cost effective for species protection? A case study of amphibian metapopulations.
    Bauer DM; Paton PW; Swallow SK
    Ecol Appl; 2010 Apr; 20(3):798-815. PubMed ID: 20437965
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Abundance and phenology patterns of two pond-breeding salamanders determine species interactions in natural populations.
    Anderson TL; Hocking DJ; Conner CA; Earl JE; Harper EB; Osbourn MS; Peterman WE; Rittenhouse TAG; Semlitsch RD
    Oecologia; 2015 Mar; 177(3):761-773. PubMed ID: 25413866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Estimation of core terrestrial habitat for stream-breeding salamanders and delineation of riparian buffers for protection of biodiversity.
    Crawford JA; Semlitsch RD
    Conserv Biol; 2007 Feb; 21(1):152-8. PubMed ID: 17298521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific dynamic action of ambystomatid salamanders and the effects of meal size, meal type, and body temperature.
    Secor SM; Boehm M
    Physiol Biochem Zool; 2006; 79(4):720-35. PubMed ID: 16826498
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of fine-scale forest habitat quality on movement and settling decisions in juvenile pond-breeding salamanders.
    Osbourn MS; Connette GM; Semlitsch RD
    Ecol Appl; 2014; 24(7):1719--29. PubMed ID: 29210233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hindcasting Historical Breeding Conditions for an Endangered Salamander in Ephemeral Wetlands of the Southeastern USA: Implications of Climate Change.
    Chandler HC; Rypel AL; Jiao Y; Haas CA; Gorman TA
    PLoS One; 2016; 11(2):e0150169. PubMed ID: 26910245
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiscale resistant kernel surfaces derived from inferred gene flow: An application with vernal pool breeding salamanders.
    Winiarski KJ; Peterman WE; Whiteley AR; McGarigal K
    Mol Ecol Resour; 2020 Jan; 20(1):97-113. PubMed ID: 31484210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Habitat use and home range of the endangered gold-spotted pond frog (Rana chosenica).
    Ra NY; Sung HC; Cheong S; Lee JH; Eom J; Park D
    Zoolog Sci; 2008 Sep; 25(9):894-903. PubMed ID: 19267598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Remarkable amphibian biomass and abundance in an isolated wetland: implications for wetland conservation.
    Gibbons JW; Winne CT; Scott DE; Willson JD; Glaudas X; Andrews KM; Todd BD; Fedewa LA; Wilkinson L; Tsaliagos RN; Harper SJ; Greene JL; Tuberville TD; Metts BS; Dorcas ME; Nestor JP; Young CA; Akre T; Reed RN; Buhlmann KA; Norman J; Croshaw DA; Hagen C; Rothermel BB
    Conserv Biol; 2006 Oct; 20(5):1457-65. PubMed ID: 17002763
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.