BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 24400567)

  • 1. [Influence of adenosine diphosphate on respiration of rat pancreatic acinar cells mitochondria in situ].
    Man'ko BO; Man'ko VV
    Fiziol Zh (1994); 2013; 59(5):61-70. PubMed ID: 24400567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [Influence of Ca2+ on kinetic parameters of pancreatic acinar mitochondria in situ respiration].
    Man'ko BO; Man'ko VV
    Ukr Biokhim Zh (1999); 2013; 85(4):48-60. PubMed ID: 24319972
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An implication of novel methodology to study pancreatic acinar mitochondria under in situ conditions.
    Manko BO; Klevets MY; Manko VV
    Cell Biochem Funct; 2013 Mar; 31(2):115-21. PubMed ID: 22886484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Endoplasmic-mitochondrial Ca(2+)-functional unit: dependence of respiration of secretory cells on activity of ryanodine- and IP3 - sensitive Ca(2+)-channels].
    Velykopols'ka OIu; Man'ko BO; Man'ko VV
    Ukr Biokhim Zh (1999); 2012; 84(5):76-88. PubMed ID: 23342638
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 2-Methylcitric acid impairs glutamate metabolism and induces permeability transition in brain mitochondria.
    Amaral AU; Cecatto C; Castilho RF; Wajner M
    J Neurochem; 2016 Apr; 137(1):62-75. PubMed ID: 26800654
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of respiration intensification of rat pancreatic acini upon carbachol-induced Ca(2+) release.
    Manko BO; Manko VV
    Acta Physiol (Oxf); 2013 Aug; 208(4):387-99. PubMed ID: 23692873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiration characteristics of mitochondria in parental and giant transformed cells of the murine Nemeth-Kellner lymphoma.
    Horbay RO; Manko BO; Manko VV; Lootsik MD; Stoika RS
    Cell Biol Int; 2012 Jan; 36(1):71-7. PubMed ID: 21899518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Several features of the oligomycin effect on phosphorylating oxidation of mitochondria at various states].
    Gorskaia IA; Kotel'nikova AV
    Biokhimiia; 1975; 40(5):1016-21. PubMed ID: 129166
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The role of cytoplasmic [Ca2+] in glucose-induced inhibition of respiration and oxidative phosphorylation in Ehrlich ascites tumour cells: a novel mechanism of the Crabtree effect.
    Evtodienko YuV ; Teplova VV; Duszyński J; Bogucka K; Wojtczak L
    Cell Calcium; 1994 Jun; 15(6):439-46. PubMed ID: 8082127
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium- and ADP-magnesium-induced respiratory uncoupling in isolated cardiac mitochondria: influence of cyclosporin A.
    Sentex E; Laurent A; Martine L; Gregoire S; Rochette L; Demaison L
    Mol Cell Biochem; 1999 Dec; 202(1-2):73-84. PubMed ID: 10705997
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Exercise training decreases rat heart mitochondria free radical generation but does not prevent Ca2+-induced dysfunction.
    Starnes JW; Barnes BD; Olsen ME
    J Appl Physiol (1985); 2007 May; 102(5):1793-8. PubMed ID: 17303708
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of pancreatic beta-cell mitochondrial metabolism: influence of Ca2+, substrate and ADP.
    Civelek VN; Deeney JT; Shalosky NJ; Tornheim K; Hansford RG; Prentki M; Corkey BE
    Biochem J; 1996 Sep; 318 ( Pt 2)(Pt 2):615-21. PubMed ID: 8809055
    [TBL] [Abstract][Full Text] [Related]  

  • 13. EXPERIMENTAL SUBSTANTIATION OF PERMEABILIZED HEPATOCYTES MODEL FOR INVESTIGATION OF MITOCHONDRIA IN SITU RESPIRATION.
    Merlavsky VM; Manko BO; Ikkert OV; Manko VV
    Ukr Biochem J; 2015; 87(6):113-21. PubMed ID: 27025065
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mitochondrial tissue specificity of substrates utilization in rat cardiac and skeletal muscles.
    Ponsot E; Zoll J; N'guessan B; Ribera F; Lampert E; Richard R; Veksler V; Ventura-Clapier R; Mettauer B
    J Cell Physiol; 2005 Jun; 203(3):479-86. PubMed ID: 15521069
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of pyruvate oxidation in blowfly flight muscle mitochondria: requirement for ADP.
    Bulos BA; Thomas BJ; Shukla SP; Sacktor B
    Arch Biochem Biophys; 1984 Nov; 234(2):382-93. PubMed ID: 6497378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyruvate and Glutamine Define the Effects of Cholecystokinin and Ethanol on Mitochondrial Oxidation, Necrosis, and Morphology of Rat Pancreatic Acini.
    Manko BO; Bilonoha OO; Voloshyn DM; Zub AM; Ivasechko II; Manko VV
    Pancreas; 2021 Aug; 50(7):972-981. PubMed ID: 34629447
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The control of brain mitochondrial energization by cytosolic calcium: the mitochondrial gas pedal.
    Gellerich FN; Gizatullina Z; Gainutdinov T; Muth K; Seppet E; Orynbayeva Z; Vielhaber S
    IUBMB Life; 2013 Mar; 65(3):180-90. PubMed ID: 23401251
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of octanoate on the rate of oxidative phosphorylation and the associated extramitochondrial ATP/ADP ratios studied with isolated rat liver mitochondria oxidizing pyruvate.
    Schönfeld P; Petzold D; Kunz W
    Biomed Biochim Acta; 1984; 43(10):1055-65. PubMed ID: 6525184
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of ATP production: dependence on calcium concentration and respiratory state.
    Fink BD; Bai F; Yu L; Sivitz WI
    Am J Physiol Cell Physiol; 2017 Aug; 313(2):C146-C153. PubMed ID: 28515085
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Substrate specific effects of calcium on metabolism of rat heart mitochondria.
    Panov AV; Scaduto RC
    Am J Physiol; 1996 Apr; 270(4 Pt 2):H1398-406. PubMed ID: 8967382
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.