BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 24400634)

  • 1. The genetic basis of natural variation for iron homeostasis in the maize IBM population.
    Benke A; Urbany C; Marsian J; Shi R; Wirén Nv; Stich B
    BMC Plant Biol; 2014 Jan; 14():12. PubMed ID: 24400634
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ups and downs of a transcriptional landscape shape iron deficiency associated chlorosis of the maize inbreds B73 and Mo17.
    Urbany C; Benke A; Marsian J; Huettel B; Reinhardt R; Stich B
    BMC Plant Biol; 2013 Dec; 13():213. PubMed ID: 24330725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative trait loci mapping of metal concentrations in leaves of the maize IBM population.
    Zdunić Z; Grljušić S; Ledenčan T; Duvnjak T; Simić D
    Hereditas; 2014 Jun; 151(2-3):55-60. PubMed ID: 25041406
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genome-wide association mapping of iron homeostasis in the maize association population.
    Benke A; Urbany C; Stich B
    BMC Genet; 2015 Jan; 16():1. PubMed ID: 25634232
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Genetic and physiological analysis of iron biofortification in maize kernels.
    Lung'aho MG; Mwaniki AM; Szalma SJ; Hart JJ; Rutzke MA; Kochian LV; Glahn RP; Hoekenga OA
    PLoS One; 2011; 6(6):e20429. PubMed ID: 21687662
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An analysis of selection on candidate genes for regulation, mobilization, uptake, and transport of iron in maize.
    Benke A; Stich B
    Genome; 2011 Aug; 54(8):674-83. PubMed ID: 21848414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping of the Quantitative Trait Loci and Candidate Genes Associated With Iron Efficiency in Maize.
    Xu J; Qin X; Zhu H; Chen F; Fu X; Yu F
    Front Plant Sci; 2022; 13():855572. PubMed ID: 35528939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing the crucial components of iron homeostasis in the maize mutants ys1 and ys3.
    Nozoye T; Nakanishi H; Nishizawa NK
    PLoS One; 2013; 8(5):e62567. PubMed ID: 23667491
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional and physiological analyses of Fe deficiency response in maize reveal the presence of Strategy I components and Fe/P interactions.
    Zanin L; Venuti S; Zamboni A; Varanini Z; Tomasi N; Pinton R
    BMC Genomics; 2017 Feb; 18(1):154. PubMed ID: 28193158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Genome-wide analysis of the NAAT, DMAS, TOM, and ENA gene families in maize suggests their roles in mediating iron homeostasis.
    Zhang X; Xiao K; Li S; Li J; Huang J; Chen R; Pang S; Zhou X
    BMC Plant Biol; 2022 Jan; 22(1):37. PubMed ID: 35039017
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron Retention in Root Hemicelluloses Causes Genotypic Variability in the Tolerance to Iron Deficiency-Induced Chlorosis in Maize.
    Shi R; Melzer M; Zheng S; Benke A; Stich B; von Wirén N
    Front Plant Sci; 2018; 9():557. PubMed ID: 29755495
    [TBL] [Abstract][Full Text] [Related]  

  • 12. QTL mapping of seedling tolerance to exposure to low temperature in the maize IBM RIL population.
    Goering R; Larsen S; Tan J; Whelan J; Makarevitch I
    PLoS One; 2021; 16(7):e0254437. PubMed ID: 34242344
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantitative genetic analysis of chlorophyll a fluorescence parameters in maize in the field environments.
    Šimić D; Lepeduš H; Jurković V; Antunović J; Cesar V
    J Integr Plant Biol; 2014 Jul; 56(7):695-708. PubMed ID: 24521148
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Combined linkage mapping and association analysis uncovers candidate genes for 25 leaf-related traits across three environments in maize.
    Dai W; Yu H; Liu K; Chengxu Y; Yan J; Zhang C; Xi N; Liu H; Xiangchen C; Zou C; Zhang M; Gao S; Pan G; Ma L; Shen Y
    Theor Appl Genet; 2023 Jan; 136(1):12. PubMed ID: 36662253
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brachypodium distachyon as a new model system for understanding iron homeostasis in grasses: phylogenetic and expression analysis of Yellow Stripe-Like (YSL) transporters.
    Yordem BK; Conte SS; Ma JF; Yokosho K; Vasques KA; Gopalsamy SN; Walker EL
    Ann Bot; 2011 Oct; 108(5):821-33. PubMed ID: 21831857
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zea mays Fe deficiency-related 4 (ZmFDR4) functions as an iron transporter in the plastids of monocots.
    Zhang XY; Zhang X; Zhang Q; Pan XX; Yan LC; Ma XJ; Zhao WZ; Qi XT; Yin LP
    Plant J; 2017 Apr; 90(1):147-163. PubMed ID: 28103409
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Genome-wide association analysis and QTL mapping reveal the genetic control of cadmium accumulation in maize leaf.
    Zhao X; Luo L; Cao Y; Liu Y; Li Y; Wu W; Lan Y; Jiang Y; Gao S; Zhang Z; Shen Y; Pan G; Lin H
    BMC Genomics; 2018 Jan; 19(1):91. PubMed ID: 29370753
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The plasma membrane proteome of maize roots grown under low and high iron conditions.
    Hopff D; Wienkoop S; Lüthje S
    J Proteomics; 2013 Oct; 91():605-18. PubMed ID: 23353019
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A retrotransposon in an HKT1 family sodium transporter causes variation of leaf Na
    Zhang M; Cao Y; Wang Z; Wang ZQ; Shi J; Liang X; Song W; Chen Q; Lai J; Jiang C
    New Phytol; 2018 Feb; 217(3):1161-1176. PubMed ID: 29139111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fine quantitative trait loci mapping of carbon and nitrogen metabolism enzyme activities and seedling biomass in the maize IBM mapping population.
    Zhang N; Gibon Y; Gur A; Chen C; Lepak N; Höhne M; Zhang Z; Kroon D; Tschoep H; Stitt M; Buckler E
    Plant Physiol; 2010 Dec; 154(4):1753-65. PubMed ID: 20971858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.