These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

351 related articles for article (PubMed ID: 24400918)

  • 1. Phase behavior of medium and high internal phase water-in-oil emulsions stabilized solely by hydrophobized bacterial cellulose nanofibrils.
    Lee KY; Blaker JJ; Murakami R; Heng JY; Bismarck A
    Langmuir; 2014 Jan; 30(2):452-60. PubMed ID: 24400918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emulsions stabilized by nanofibers from bacterial cellulose: New potential food-grade Pickering emulsions.
    Zhai X; Lin D; Liu D; Yang X
    Food Res Int; 2018 Jan; 103():12-20. PubMed ID: 29389597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. New Pickering emulsions stabilized by bacterial cellulose nanocrystals.
    Kalashnikova I; Bizot H; Cathala B; Capron I
    Langmuir; 2011 Jun; 27(12):7471-9. PubMed ID: 21604688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Surfactant-free high internal phase emulsions stabilized by cellulose nanocrystals.
    Capron I; Cathala B
    Biomacromolecules; 2013 Feb; 14(2):291-6. PubMed ID: 23289355
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Coalescence behavior of eco-friendly Pickering-MIPES and HIPEs stabilized by using bacterial cellulose nanofibrils.
    Li Q; Wu Y; Shabbir M; Pei Y; Liang H; Li J; Chen Y; Li Y; Li B; Luo X; Liu S
    Food Chem; 2021 Jul; 349():129163. PubMed ID: 33550021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacteria interface pickering emulsions stabilized by self-assembled bacteria-chitosan network.
    Wongkongkatep P; Manopwisedjaroen K; Tiposoth P; Archakunakorn S; Pongtharangkul T; Suphantharika M; Honda K; Hamachi I; Wongkongkatep J
    Langmuir; 2012 Apr; 28(13):5729-36. PubMed ID: 22443382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of solid particle content on properties of o/w Pickering emulsions.
    Frelichowska J; Bolzinger MA; Chevalier Y
    J Colloid Interface Sci; 2010 Nov; 351(2):348-56. PubMed ID: 20800850
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of cellulose nanocrystals amphiphilic properties to stabilize oil/water interface.
    Kalashnikova I; Bizot H; Cathala B; Capron I
    Biomacromolecules; 2012 Jan; 13(1):267-75. PubMed ID: 22126590
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Stabilization of Pickering Emulsions with Oppositely Charged Latex Particles: Influence of Various Parameters and Particle Arrangement around Droplets.
    Nallamilli T; Binks BP; Mani E; Basavaraj MG
    Langmuir; 2015 Oct; 31(41):11200-8. PubMed ID: 26411316
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of double Pickering emulsions stabilized by chemically tailored nanocelluloses.
    Cunha AG; Mougel JB; Cathala B; Berglund LA; Capron I
    Langmuir; 2014 Aug; 30(31):9327-35. PubMed ID: 25046221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cellulose nanofibrils for one-step stabilization of multiple emulsions (W/O/W) based on soybean oil.
    Carrillo CA; Nypelö TE; Rojas OJ
    J Colloid Interface Sci; 2015 May; 445():166-173. PubMed ID: 25617611
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Surfactant-enhanced cellulose nanocrystal Pickering emulsions.
    Hu Z; Ballinger S; Pelton R; Cranston ED
    J Colloid Interface Sci; 2015 Feb; 439():139-48. PubMed ID: 25463186
    [TBL] [Abstract][Full Text] [Related]  

  • 13. One-step formation of w/o/w multiple emulsions stabilized by single amphiphilic block copolymers.
    Hong L; Sun G; Cai J; Ngai T
    Langmuir; 2012 Feb; 28(5):2332-6. PubMed ID: 22260367
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evolution of equilibrium Pickering emulsions--a matter of time scales.
    Kraft DJ; Luigjes B; de Folter JW; Philipse AP; Kegel WK
    J Phys Chem B; 2010 Sep; 114(38):12257-63. PubMed ID: 20809591
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface modification of bacterial cellulose aerogels' web-like skeleton for oil/water separation.
    Sai H; Fu R; Xing L; Xiang J; Li Z; Li F; Zhang T
    ACS Appl Mater Interfaces; 2015 Apr; 7(13):7373-81. PubMed ID: 25799389
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-step electrospinning cellulose nanofibers with superhydrophilicity and superoleophobicity underwater for high-efficiency oil-water separation.
    Shu D; Xi P; Cheng B; Wang Y; Yang L; Wang X; Yan X
    Int J Biol Macromol; 2020 Nov; 162():1536-1545. PubMed ID: 32781123
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A comparison of Canthaxanthine Pickering emulsions, stabilized with cellulose nanocrystals of different origins.
    Hedjazi S; Razavi SH
    Int J Biol Macromol; 2018 Jan; 106():489-497. PubMed ID: 28803977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Entrapment of bacterial cellulose nanocrystals stabilized Pickering emulsions droplets in alginate beads for hydrophobic drug delivery.
    Yan H; Chen X; Feng M; Shi Z; Zhang W; Wang Y; Ke C; Lin Q
    Colloids Surf B Biointerfaces; 2019 May; 177():112-120. PubMed ID: 30716696
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of Surface-Responsive Composite Particles by Dehydration of Water-in-Oil Emulsions.
    Liang C; Liu Q; Xu Z
    ACS Appl Mater Interfaces; 2015 Sep; 7(37):20631-9. PubMed ID: 26302364
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oil-in-water emulsions stabilized by hydrophobically modified hydroxyethyl cellulose: adsorption and thickening effect.
    Sun W; Sun D; Wei Y; Liu S; Zhang S
    J Colloid Interface Sci; 2007 Jul; 311(1):228-36. PubMed ID: 17379236
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.