These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. A green synthesis route for the phase and size tunability of copper antimony sulfide nanocrystals with high yield. Chen K; Zhou J; Chen W; Chen Q; Zhou P; Liu Y Nanoscale; 2016 Mar; 8(9):5146-52. PubMed ID: 26875832 [TBL] [Abstract][Full Text] [Related]
5. Synthesis of CuSbS Behera C; Samal R; Rout CS; Dhaka RS; Sahoo G; Samal SL Inorg Chem; 2019 Nov; 58(22):15291-15302. PubMed ID: 31693354 [TBL] [Abstract][Full Text] [Related]
6. Structural, optical and charge generation properties of chalcostibite and tetrahedrite copper antimony sulfide thin films prepared from metal xanthates. Rath T; MacLachlan AJ; Brown MD; Haque SA J Mater Chem A Mater; 2015 Dec; 3(47):24155-24162. PubMed ID: 27019713 [TBL] [Abstract][Full Text] [Related]
7. Core Levels, Band Alignments, and Valence-Band States in CuSbS Whittles TJ; Veal TD; Savory CN; Welch AW; de Souza Lucas FW; Gibbon JT; Birkett M; Potter RJ; Scanlon DO; Zakutayev A; Dhanak VR ACS Appl Mater Interfaces; 2017 Dec; 9(48):41916-41926. PubMed ID: 29124940 [TBL] [Abstract][Full Text] [Related]
8. Thin-Film Solar Cells Based on Selenized CuSbS Zhao M; Yu J; Fu L; Guan Y; Tang H; Li L; Cheng J Nanomaterials (Basel); 2021 Nov; 11(11):. PubMed ID: 34835773 [TBL] [Abstract][Full Text] [Related]
9. Synthesis of Copper-Antimony-Sulfide Nanocrystals for Solution-Processed Solar Cells. Suehiro S; Horita K; Yuasa M; Tanaka T; Fujita K; Ishiwata Y; Shimanoe K; Kida T Inorg Chem; 2015 Aug; 54(16):7840-5. PubMed ID: 26237216 [TBL] [Abstract][Full Text] [Related]
10. Controlled synthesis and transfer of large-area WS2 sheets: from single layer to few layers. Elías AL; Perea-López N; Castro-Beltrán A; Berkdemir A; Lv R; Feng S; Long AD; Hayashi T; Kim YA; Endo M; Gutiérrez HR; Pradhan NR; Balicas L; Mallouk TE; López-Urías F; Terrones H; Terrones M ACS Nano; 2013 Jun; 7(6):5235-42. PubMed ID: 23647141 [TBL] [Abstract][Full Text] [Related]
11. Large-scale synthesis of few-layered copper antimony sulfide nanosheets as electrode materials for high-rate potassium-ion storage. Chang CB; Chen KT; Tuan HY J Colloid Interface Sci; 2022 Feb; 608(Pt 1):984-994. PubMed ID: 34785473 [TBL] [Abstract][Full Text] [Related]
12. Structural and electronic properties of CuSbS2 and CuBiS2: potential absorber materials for thin-film solar cells. Dufton JT; Walsh A; Panchmatia PM; Peter LM; Colombara D; Islam MS Phys Chem Chem Phys; 2012 May; 14(20):7229-33. PubMed ID: 22514020 [TBL] [Abstract][Full Text] [Related]
13. Study of defect density of copper vacancies in chalcogenide CuSbS Lal S; Rathore S; Patel K; Ray J; Sharma SS Environ Sci Pollut Res Int; 2024 Jul; ():. PubMed ID: 39037627 [TBL] [Abstract][Full Text] [Related]
14. A precursor-limited nanoparticle coalescence pathway for tuning the thickness of laterally-uniform colloidal nanosheets: the case of SnSe. Vaughn DD; In SI; Schaak RE ACS Nano; 2011 Nov; 5(11):8852-60. PubMed ID: 21992106 [TBL] [Abstract][Full Text] [Related]
15. Synthesis of ternary copper antimony sulfide via solventless thermolysis or aerosol assisted chemical vapour deposition using metal dithiocarbamates. Makin F; Alam F; Buckingham MA; Lewis DJ Sci Rep; 2022 Apr; 12(1):5627. PubMed ID: 35379851 [TBL] [Abstract][Full Text] [Related]
16. Copper antimony sulfide thin films for visible to near infrared photodetector applications. Vinayakumar V; Shaji S; Avellaneda D; Aguilar-Martínez JA; Krishnan B RSC Adv; 2018 Aug; 8(54):31055-31065. PubMed ID: 35548774 [TBL] [Abstract][Full Text] [Related]
17. Evolution of the electronic band structure and efficient photo-detection in atomic layers of InSe. Lei S; Ge L; Najmaei S; George A; Kappera R; Lou J; Chhowalla M; Yamaguchi H; Gupta G; Vajtai R; Mohite AD; Ajayan PM ACS Nano; 2014 Feb; 8(2):1263-72. PubMed ID: 24392873 [TBL] [Abstract][Full Text] [Related]
18. Enhanced Photoelectric SrOCuSbS Bu K; Luo M; Wang R; Zhang X; He J; Wang D; Zhao W; Huang F Inorg Chem; 2019 Jan; 58(1):69-72. PubMed ID: 30585480 [TBL] [Abstract][Full Text] [Related]
19. Density functional study of the interfacial electron transfer pathway for monolayer-adsorbed InN on the TiO(2) anatase (101) surface. Lin JS; Chou WC; Lu SY; Jang GJ; Tseng BR; Li YT J Phys Chem B; 2006 Nov; 110(46):23460-6. PubMed ID: 17107198 [TBL] [Abstract][Full Text] [Related]
20. Structural and Optical Characterization of Mechanochemically Synthesized CuSbS Esperto L; Figueira I; Mascarenhas J; Silva TP; Correia JB; Neves F Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683139 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]