These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 24401079)
1. Targeting a G-protein-coupled receptor overexpressed in endocrine tumors by magnetic nanoparticles to induce cell death. Sanchez C; El Hajj Diab D; Connord V; Clerc P; Meunier E; Pipy B; Payré B; Tan RP; Gougeon M; Carrey J; Gigoux V; Fourmy D ACS Nano; 2014 Feb; 8(2):1350-63. PubMed ID: 24401079 [TBL] [Abstract][Full Text] [Related]
2. Regulation of membrane cholecystokinin-2 receptor by agonists enables classification of partial agonists as biased agonists. Magnan R; Masri B; Escrieut C; Foucaud M; Cordelier P; Fourmy D J Biol Chem; 2011 Feb; 286(8):6707-19. PubMed ID: 21156802 [TBL] [Abstract][Full Text] [Related]
3. Targeting and cellular trafficking of magnetic nanoparticles for prostate cancer imaging. Serda RE; Adolphi NL; Bisoffi M; Sillerud LO Mol Imaging; 2007; 6(4):277-88. PubMed ID: 17711783 [TBL] [Abstract][Full Text] [Related]
4. Hyaluronic acid immobilized magnetic nanoparticles for active targeting and imaging of macrophages. Kamat M; El-Boubbou K; Zhu DC; Lansdell T; Lu X; Li W; Huang X Bioconjug Chem; 2010 Nov; 21(11):2128-35. PubMed ID: 20977242 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of poly-l-lysine-modified iron oxide nanoparticles uptake into cells. Li Z; Shuai C; Li X; Li X; Xiang J; Li G J Biomed Mater Res A; 2013 Oct; 101(10):2846-50. PubMed ID: 23504952 [TBL] [Abstract][Full Text] [Related]
6. Methotrexate-modified superparamagnetic nanoparticles and their intracellular uptake into human cancer cells. Kohler N; Sun C; Wang J; Zhang M Langmuir; 2005 Sep; 21(19):8858-64. PubMed ID: 16142971 [TBL] [Abstract][Full Text] [Related]
7. Cell compatibility of a maghemite/polymer biomedical nanoplatform. Ali LM; Piñol R; Villa-Bellosta R; Gabilondo L; Millán A; Palacio F; Sorribas V Toxicol In Vitro; 2015 Aug; 29(5):962-75. PubMed ID: 25891827 [TBL] [Abstract][Full Text] [Related]
8. Lactoferrin and ceruloplasmin derivatized superparamagnetic iron oxide nanoparticles for targeting cell surface receptors. Gupta AK; Curtis AS Biomaterials; 2004 Jul; 25(15):3029-40. PubMed ID: 14967536 [TBL] [Abstract][Full Text] [Related]
9. Lysosomal membrane permeabilization by targeted magnetic nanoparticles in alternating magnetic fields. Domenech M; Marrero-Berrios I; Torres-Lugo M; Rinaldi C ACS Nano; 2013 Jun; 7(6):5091-101. PubMed ID: 23705969 [TBL] [Abstract][Full Text] [Related]
10. Targeted Magnetic Intra-Lysosomal Hyperthermia produces lysosomal reactive oxygen species and causes Caspase-1 dependent cell death. Clerc P; Jeanjean P; Hallali N; Gougeon M; Pipy B; Carrey J; Fourmy D; Gigoux V J Control Release; 2018 Jan; 270():120-134. PubMed ID: 29203413 [TBL] [Abstract][Full Text] [Related]
11. The influence of surface functionalization on the enhanced internalization of magnetic nanoparticles in cancer cells. Villanueva A; Cañete M; Roca AG; Calero M; Veintemillas-Verdaguer S; Serna CJ; Morales Mdel P; Miranda R Nanotechnology; 2009 Mar; 20(11):115103. PubMed ID: 19420433 [TBL] [Abstract][Full Text] [Related]
12. Biodistribution and targeting properties of iron oxide nanoparticles for treatments of cancer and iron anemia disease. Alphandéry E Nanotoxicology; 2019 Jun; 13(5):573-596. PubMed ID: 30938215 [TBL] [Abstract][Full Text] [Related]
13. Folate-conjugated iron oxide nanoparticles for solid tumor targeting as potential specific magnetic hyperthermia mediators: synthesis, physicochemical characterization, and in vitro experiments. Sonvico F; Mornet S; Vasseur S; Dubernet C; Jaillard D; Degrouard J; Hoebeke J; Duguet E; Colombo P; Couvreur P Bioconjug Chem; 2005; 16(5):1181-8. PubMed ID: 16173796 [TBL] [Abstract][Full Text] [Related]
14. [In vitro gene transfection by magnetic iron oxide nanoparticles and magnetic field increases transfection efficiency]. Xiang JJ; Nie XM; Tang JQ; Wang YJ; Li Z; Gan K; Huang H; Xiong W; Li XL; Li GY Zhonghua Zhong Liu Za Zhi; 2004 Feb; 26(2):71-4. PubMed ID: 15059320 [TBL] [Abstract][Full Text] [Related]
15. Nanomagnetism reveals the intracellular clustering of iron oxide nanoparticles in the organism. Levy M; Wilhelm C; Luciani N; Deveaux V; Gendron F; Luciani A; Devaud M; Gazeau F Nanoscale; 2011 Oct; 3(10):4402-10. PubMed ID: 21931920 [TBL] [Abstract][Full Text] [Related]
16. Toward absolute quantification of iron oxide nanoparticles as well as cell internalized fraction using multiparametric MRI. Girard OM; Ramirez R; McCarty S; Mattrey RF Contrast Media Mol Imaging; 2012; 7(4):411-7. PubMed ID: 22649047 [TBL] [Abstract][Full Text] [Related]
17. Direct cell entry of gold/iron-oxide magnetic nanoparticles in adenovirus mediated gene delivery. Kamei K; Mukai Y; Kojima H; Yoshikawa T; Yoshikawa M; Kiyohara G; Yamamoto TA; Yoshioka Y; Okada N; Seino S; Nakagawa S Biomaterials; 2009 Mar; 30(9):1809-14. PubMed ID: 19136151 [TBL] [Abstract][Full Text] [Related]
18. Magnetically labeled cells with surface-modified fe3 o4 spherical and rod-shaped magnetic nanoparticles for tissue engineering applications. Gil S; Correia CR; Mano JF Adv Healthc Mater; 2015 Apr; 4(6):883-91. PubMed ID: 25641785 [TBL] [Abstract][Full Text] [Related]
19. Limitations and caveats of magnetic cell labeling using transfection agent complexed iron oxide nanoparticles. Soenen SJ; De Smedt SC; Braeckmans K Contrast Media Mol Imaging; 2012; 7(2):140-52. PubMed ID: 22434626 [TBL] [Abstract][Full Text] [Related]
20. Herceptin-directed nanoparticles activated by an alternating magnetic field selectively kill HER-2 positive human breast cells in vitro via hyperthermia. Zhang J; Dewilde AH; Chinn P; Foreman A; Barry S; Kanne D; Braunhut SJ Int J Hyperthermia; 2011; 27(7):682-97. PubMed ID: 21992561 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]