These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
87 related articles for article (PubMed ID: 24401079)
21. The internalization pathway, metabolic fate and biological effect of superparamagnetic iron oxide nanoparticles in the macrophage-like RAW264.7 cell. Gu J; Xu H; Han Y; Dai W; Hao W; Wang C; Gu N; Xu H; Cao J Sci China Life Sci; 2011 Sep; 54(9):793-805. PubMed ID: 21922429 [TBL] [Abstract][Full Text] [Related]
22. The effect of mechanical properties of iron oxide nanoparticle-loaded functional nano-carrier on tumor targeting and imaging. Choi WI; Kim JY; Heo SU; Jeong YY; Kim YH; Tae G J Control Release; 2012 Sep; 162(2):267-75. PubMed ID: 22824783 [TBL] [Abstract][Full Text] [Related]
23. Targeting of peptide conjugated magnetic nanoparticles to urokinase plasminogen activator receptor (uPAR) expressing cells. Hansen L; Larsen EK; Nielsen EH; Iversen F; Liu Z; Thomsen K; Pedersen M; Skrydstrup T; Nielsen NC; Ploug M; Kjems J Nanoscale; 2013 Sep; 5(17):8192-201. PubMed ID: 23835641 [TBL] [Abstract][Full Text] [Related]
24. EGFR-targeted magnetic nanoparticle heaters kill cancer cells without a perceptible temperature rise. Creixell M; Bohórquez AC; Torres-Lugo M; Rinaldi C ACS Nano; 2011 Sep; 5(9):7124-9. PubMed ID: 21838221 [TBL] [Abstract][Full Text] [Related]
25. Folate receptor targeted, carboxymethyl chitosan functionalized iron oxide nanoparticles: a novel ultradispersed nanoconjugates for bimodal imaging. Bhattacharya D; Das M; Mishra D; Banerjee I; Sahu SK; Maiti TK; Pramanik P Nanoscale; 2011 Apr; 3(4):1653-62. PubMed ID: 21331392 [TBL] [Abstract][Full Text] [Related]
26. Differences in endosomal targeting of human (beta)1- and (beta)2-adrenergic receptors following clathrin-mediated endocytosis. Liang W; Curran PK; Hoang Q; Moreland RT; Fishman PH J Cell Sci; 2004 Feb; 117(Pt 5):723-34. PubMed ID: 14734649 [TBL] [Abstract][Full Text] [Related]
27. High-frequency, magnetic-field-responsive drug release from magnetic nanoparticle/organic hybrid based on hyperthermic effect. Hayashi K; Ono K; Suzuki H; Sawada M; Moriya M; Sakamoto W; Yogo T ACS Appl Mater Interfaces; 2010 Jul; 2(7):1903-11. PubMed ID: 20568697 [TBL] [Abstract][Full Text] [Related]
28. Cellular response to magnetic nanoparticles "PEGylated" via surface-initiated atom transfer radical polymerization. Hu F; Neoh KG; Cen L; Kang ET Biomacromolecules; 2006 Mar; 7(3):809-16. PubMed ID: 16529418 [TBL] [Abstract][Full Text] [Related]
29. Purification of Lysosomes Using Supraparamagnetic Iron Oxide Nanoparticles (SPIONs). Rofe AP; Pryor PR Cold Spring Harb Protoc; 2016 Apr; 2016(4):pdb.prot084822. PubMed ID: 27037068 [TBL] [Abstract][Full Text] [Related]
30. Raman microscopy allows to follow internalization, subcellular accumulation and fate of iron oxide nanoparticles in cells. Rugiel M; Janik-Olchawa N; Kowalczyk J; Pomorska K; Sitarz M; Bik E; Horak D; Babic M; Setkowicz Z; Chwiej J Spectrochim Acta A Mol Biomol Spectrosc; 2024 Dec; 323():124888. PubMed ID: 39116589 [TBL] [Abstract][Full Text] [Related]
31. Targeting tumor cells using magnetic nanoparticles - a feasibility study in animal models. Goren K; Neelam N; Yuval JB; Weiss DJ; Kunicher N; Margel S; Mintz Y Minim Invasive Ther Allied Technol; 2022 Oct; 31(7):1086-1095. PubMed ID: 36148547 [TBL] [Abstract][Full Text] [Related]
32. Evaluation of a cholecystokinin 2 receptor-targeted near-infrared dye for fluorescence-guided surgery of cancer. Wayua C; Low PS Mol Pharm; 2014 Feb; 11(2):468-76. PubMed ID: 24325469 [TBL] [Abstract][Full Text] [Related]
33. Magnetic nanoparticles as mediators of ligand-free activation of EGFR signaling. Bharde AA; Palankar R; Fritsch C; Klaver A; Kanger JS; Jovin TM; Arndt-Jovin DJ PLoS One; 2013; 8(7):e68879. PubMed ID: 23894364 [TBL] [Abstract][Full Text] [Related]
34. Combined Treatments of Magnetic Intra-Lysosomal Hyperthermia with Doxorubicin Promotes Synergistic Anti-Tumoral Activity. El Hajj Diab D; Clerc P; Serhan N; Fourmy D; Gigoux V Nanomaterials (Basel); 2018 Jun; 8(7):. PubMed ID: 29954075 [TBL] [Abstract][Full Text] [Related]
35. Shape-dependent cellular uptake of iron oxide nanorods: mechanisms of endocytosis and implications on cell labeling and cellular delivery. Thamizhchelvan AM; Ma H; Wu T; Nguyen D; Padelford J; Whitworth TJ; Li Y; Yang L; Mao H Nanoscale; 2024 Nov; 16(46):21398-21415. PubMed ID: 39329423 [TBL] [Abstract][Full Text] [Related]
36. Quantitative assessment of binding affinities for nanoparticles targeted to vulnerable plaque. Tang T; Tu C; Chow SY; Leung KH; Du S; Louie AY Bioconjug Chem; 2015 Jun; 26(6):1086-94. PubMed ID: 25970303 [TBL] [Abstract][Full Text] [Related]
37. Elongated Nanoparticle Aggregates in Cancer Cells for Mechanical Destruction with Low Frequency Rotating Magnetic Field. Shen Y; Wu C; Uyeda TQP; Plaza GR; Liu B; Han Y; Lesniak MS; Cheng Y Theranostics; 2017; 7(6):1735-1748. PubMed ID: 28529648 [TBL] [Abstract][Full Text] [Related]
38. Selective Tumor Targeting of Desacetyl Vinblastine Hydrazide and Tubulysin B via Conjugation to a Cholecystokinin 2 Receptor (CCK2R) Ligand. Wayua C; Roy J; Putt KS; Low PS Mol Pharm; 2015 Jul; 12(7):2477-83. PubMed ID: 26043355 [TBL] [Abstract][Full Text] [Related]
39. Magnetic nanoparticles to recover cellular organelles and study the time resolved nanoparticle-cell interactome throughout uptake. Bertoli F; Davies GL; Monopoli MP; Moloney M; Gun'ko YK; Salvati A; Dawson KA Small; 2014 Aug; 10(16):3307-15. PubMed ID: 24737750 [TBL] [Abstract][Full Text] [Related]
40. Role of nanoparticle valency in the nondestructive magnetic-relaxation-mediated detection and magnetic isolation of cells in complex media. Kaittanis C; Santra S; Perez JM J Am Chem Soc; 2009 Sep; 131(35):12780-91. PubMed ID: 19681607 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]