BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 24401405)

  • 41. The extraction and speciation of arsenic in rice flour by HPLC-ICP-MS.
    Narukawa T; Inagaki K; Kuroiwa T; Chiba K
    Talanta; 2008 Oct; 77(1):427-32. PubMed ID: 18804656
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Determination of inorganic arsenic in food by hybrid generation-atomic fluorescence spectrometry (HG-AFS)].
    Gu W; Yang H
    Wei Sheng Yan Jiu; 1999 Nov; 28(6):372-4. PubMed ID: 12016994
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Speciation analysis of inorganic arsenic by a multisyringe flow injection system with hydride generation-atomic fluorescence spectrometric detection.
    Leal LO; Forteza R; Cerdà V
    Talanta; 2006 Apr; 69(2):500-8. PubMed ID: 18970595
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A rapid monitoring method for inorganic arsenic in rice flour using reversed phase-high performance liquid chromatography-inductively coupled plasma mass spectrometry.
    Narukawa T; Chiba K; Sinaviwat S; Feldmann J
    J Chromatogr A; 2017 Jan; 1479():129-136. PubMed ID: 27939600
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Speciation of arsenic in rice and estimation of daily intake of different arsenic species by Brazilians through rice consumption.
    Batista BL; Souza JM; De Souza SS; Barbosa F
    J Hazard Mater; 2011 Jul; 191(1-3):342-8. PubMed ID: 21601359
    [TBL] [Abstract][Full Text] [Related]  

  • 46. UV-assisted Fenton digestion of rice for the determination of trace cadmium by hydride generation atomic fluorescence spectrometry.
    Yu H; Ai X; Xu K; Zheng C; Hou X
    Analyst; 2016 Feb; 141(4):1512-8. PubMed ID: 26759832
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Speciation analysis of inorganic arsenic in natural water by carbon nanofibers separation and inductively coupled plasma mass spectrometry determination.
    Chen S; Zhan X; Lu D; Liu C; Zhu L
    Anal Chim Acta; 2009 Feb; 634(2):192-6. PubMed ID: 19185119
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Simultaneous speciation analysis of arsenic and antimony in traditional Chinese medicines by hydride generation-double channel atomic fluorescence spectrometry].
    Yang LL; Li N; Zhang DQ
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Apr; 27(4):810-2. PubMed ID: 17608206
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Hydride generation using a metallic atomizer after microwave-assisted extraction for inorganic arsenic speciation in biological samples.
    Lehmann EL; Fostier AH; Arruda MA
    Talanta; 2013 Jan; 104():187-92. PubMed ID: 23597908
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Heat-assisted aqueous extraction of rice flour for arsenic speciation analysis.
    Narukawa T; Chiba K
    J Agric Food Chem; 2010 Jul; 58(14):8183-8. PubMed ID: 20586491
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A comparative evaluation of different ionic liquids for arsenic species separation and determination in wine varietals by liquid chromatography - hydride generation atomic fluorescence spectrometry.
    Castro Grijalba A; Fiorentini EF; Martinez LD; Wuilloud RG
    J Chromatogr A; 2016 Sep; 1462():44-54. PubMed ID: 27495368
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Speciation of As(III) and As(V) in fruit juices by dispersive liquid-liquid microextraction and hydride generation-atomic fluorescence spectrometry.
    Lai G; Chen G; Chen T
    Food Chem; 2016 Jan; 190():158-163. PubMed ID: 26212955
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Comparative study of atomic fluorescence spectroscopy and inductively coupled plasma mass spectrometry for mercury and arsenic multispeciation.
    Gómez-Ariza JL; Lorenzo F; García-Barrera T
    Anal Bioanal Chem; 2005 May; 382(2):485-92. PubMed ID: 15782336
    [TBL] [Abstract][Full Text] [Related]  

  • 54. [Establishment of arsenic speciation analysis method and application in rice].
    Su ZJ; Hu SG; Cai WH; Yang XF; Wang J; Fan JB; Huang HY; Huang WX
    Zhonghua Yu Fang Yi Xue Za Zhi; 2018 Oct; 52(10):994-1002. PubMed ID: 30392316
    [No Abstract]   [Full Text] [Related]  

  • 55. [Simultaneous speciation of arsenic and selenium by high performance liquid chromatography-double channel atomic fluorescence spectrometry].
    Wang Z; He B; Shi J; Yin Y; Jiang G
    Se Pu; 2009 Sep; 27(5):711-6. PubMed ID: 20073208
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Arsenic sorption and speciation with branch-polyethyleneimine modified carbon nanotubes with detection by atomic fluorescence spectrometry.
    Chen M; Lin Y; Gu C; Wang J
    Talanta; 2013 Jan; 104():53-7. PubMed ID: 23597888
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A simple method using on-line continuous leaching and ion exchange chromatography coupled to inductively coupled plasma mass spectrometry for the speciation analysis of bio-accessible arsenic in rice.
    Horner NS; Beauchemin D
    Anal Chim Acta; 2012 Mar; 717():1-6. PubMed ID: 22304810
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Optimization of cloud point extraction and solid phase extraction methods for speciation of arsenic in natural water using multivariate technique.
    Baig JA; Kazi TG; Shah AQ; Arain MB; Afridi HI; Kandhro GA; Khan S
    Anal Chim Acta; 2009 Sep; 651(1):57-63. PubMed ID: 19733735
    [TBL] [Abstract][Full Text] [Related]  

  • 59. HPLC-HG-ICP-MS: a sensitive and selective method for inorganic arsenic in seafood.
    Pétursdóttir AH; Gunnlaugsdóttir H; Jörundsdóttir H; Mestrot A; Krupp EM; Feldmann J
    Anal Bioanal Chem; 2012 Nov; 404(8):2185-91. PubMed ID: 22926131
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Determination of mercury in rice by MSFIA and cold vapour atomic fluorescence spectrometry.
    da Silva DG; Portugal LA; Serra AM; Ferreira SL; Cerdà V
    Food Chem; 2013 Apr; 137(1-4):159-63. PubMed ID: 23200004
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.