These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 24401440)
21. Preparation of titanium-grafted magnetic mesoporous silica for the enrichment of endogenous serum phosphopeptides. Li XS; Pan YN; Zhao Y; Yuan BF; Guo L; Feng YQ J Chromatogr A; 2013 Nov; 1315():61-9. PubMed ID: 24090595 [TBL] [Abstract][Full Text] [Related]
22. Highly specific enrichment of phosphopeptides by zirconium dioxide nanoparticles for phosphoproteome analysis. Zhou H; Tian R; Ye M; Xu S; Feng S; Pan C; Jiang X; Li X; Zou H Electrophoresis; 2007 Jul; 28(13):2201-15. PubMed ID: 17539039 [TBL] [Abstract][Full Text] [Related]
23. Hydrothermal synthesis of α-Fe(2)O(3)@SnO(2) core-shell nanotubes for highly selective enrichment of phosphopeptides for mass spectrometry analysis. Lu J; Qi D; Deng C; Zhang X; Yang P Nanoscale; 2010 Oct; 2(10):1892-900. PubMed ID: 20820686 [TBL] [Abstract][Full Text] [Related]
24. Ceria-based nanocomposites for the enrichment and identification of phosphopeptides. Fatima B; Najam-ul-Haq M; Jabeen F; Majeed S; Ashiq MN; Musharraf SG; Shad MA; Xu G Analyst; 2013 Sep; 138(17):5059-67. PubMed ID: 23844417 [TBL] [Abstract][Full Text] [Related]
25. A novel tantalum-based sol-gel packed microextraction syringe for highly specific enrichment of phosphopeptides in MALDI-MS applications. Çelikbıçak Ö; Atakay M; Güler Ü; Salih B Analyst; 2013 Aug; 138(15):4403-10. PubMed ID: 23730683 [TBL] [Abstract][Full Text] [Related]
26. EJMS protocol: systematic studies on TiO2-based phosphopeptide enrichment procedures upon in-solution and in-gel digestions of proteins. Are there readily applicable protocols suitable for matrix-assisted laser desorption/ionization mass spectrometry-based phosphopeptide stability estimations? Eickner T; Mikkat S; Lorenz P; Sklorz M; Zimmermann R; Thiesen HJ; Glocker MO Eur J Mass Spectrom (Chichester); 2011; 17(5):507-23. PubMed ID: 22173543 [TBL] [Abstract][Full Text] [Related]
27. Highly selective SiO Xu D; Yan G; Gao M; Deng C; Zhang X Anal Bioanal Chem; 2017 Feb; 409(6):1607-1614. PubMed ID: 27900429 [TBL] [Abstract][Full Text] [Related]
28. Preparation of Fe3O4@ZrO2 core-shell microspheres as affinity probes for selective enrichment and direct determination of phosphopeptides using matrix-assisted laser desorption ionization mass spectrometry. Li Y; Leng T; Lin H; Deng C; Xu X; Yao N; Yang P; Zhang X J Proteome Res; 2007 Nov; 6(11):4498-510. PubMed ID: 17900103 [TBL] [Abstract][Full Text] [Related]
29. Development of erbium phosphate doped poly(glycidyl methacrylate/ethylene dimethacrylate) spin columns for selective enrichment of phosphopeptides. Güzel Y; Rainer M; Messner CB; Hussain S; Meischl F; Sasse M; Tessadri R; Bonn GK J Sep Sci; 2015 May; 38(8):1334-43. PubMed ID: 25645427 [TBL] [Abstract][Full Text] [Related]
30. Silica-lanthanum oxide: pioneer composite of rare-Earth metal oxide in selective phosphopeptides enrichment. Jabeen F; Hussain D; Fatima B; Musharraf SG; Huck CW; Bonn GK; Najam-ul-Haq M Anal Chem; 2012 Dec; 84(23):10180-5. PubMed ID: 23134445 [TBL] [Abstract][Full Text] [Related]
31. Lanthanum silicate coated magnetic microspheres as a promising affinity material for phosphopeptide enrichment and identification. Cheng G; Liu YL; Zhang JL; Sun DH; Ni JZ Anal Bioanal Chem; 2012 Aug; 404(3):763-70. PubMed ID: 22722743 [TBL] [Abstract][Full Text] [Related]
32. An Exfoliated 2D Egyptian Blue Nanosheet for Highly Selective Enrichment of Multi-phosphorylated Peptides in Mass Spectrometric Analysis. Yang SS; Yu HX; Wang ZZ; Liu HL; Zhang H; Yu X; Shang W; Chen GQ; Gu ZY Chemistry; 2018 Feb; 24(9):2109-2116. PubMed ID: 29071782 [TBL] [Abstract][Full Text] [Related]
33. Mesoporous TiO(2) nanocrystal clusters for selective enrichment of phosphopeptides. Lu Z; Duan J; He L; Hu Y; Yin Y Anal Chem; 2010 Sep; 82(17):7249-58. PubMed ID: 20712324 [TBL] [Abstract][Full Text] [Related]
34. Magnetic binary metal oxides affinity probe for highly selective enrichment of phosphopeptides. Wang M; Deng C; Li Y; Zhang X ACS Appl Mater Interfaces; 2014 Jul; 6(14):11775-82. PubMed ID: 24911384 [TBL] [Abstract][Full Text] [Related]
35. Synthesis of a new type of echinus-like Fe3O4@TiO2 core-shell-structured microspheres and their applications in selectively enriching phosphopeptides and removing phospholipids. Li H; Shi X; Qiao L; Lu X; Xu G J Chromatogr A; 2013 Feb; 1275():9-16. PubMed ID: 23294993 [TBL] [Abstract][Full Text] [Related]
36. Enrichment of phosphopeptides using bare magnetic particles. Lee A; Yang HJ; Lim ES; Kim J; Kim Y Rapid Commun Mass Spectrom; 2008 Aug; 22(16):2561-4. PubMed ID: 18655002 [TBL] [Abstract][Full Text] [Related]
37. Zirconium phosphonate-modified porous silicon for highly specific capture of phosphopeptides and MALDI-TOF MS analysis. Zhou H; Xu S; Ye M; Feng S; Pan C; Jiang X; Li X; Han G; Fu Y; Zou H J Proteome Res; 2006 Sep; 5(9):2431-7. PubMed ID: 16944956 [TBL] [Abstract][Full Text] [Related]
38. Zirconium arsenate-modified magnetic nanoparticles: preparation, characterization and application to the enrichment of phosphopeptides. Li XS; Xu LD; Zhu GT; Yuan BF; Feng YQ Analyst; 2012 Feb; 137(4):959-67. PubMed ID: 22182930 [TBL] [Abstract][Full Text] [Related]
39. Highly selective enrichment of phosphopeptides by on-chip indium oxide functionalized magnetic nanoparticles coupled with MALDI-TOF MS. Jiang D; Song N; Li X; Ma J; Jia Q Proteomics; 2017 Sep; 17(17-18):. PubMed ID: 28722797 [TBL] [Abstract][Full Text] [Related]
40. Highly efficient enrichment of phosphopeptides by magnetic nanoparticles coated with zirconium phosphonate for phosphoproteome analysis. Wei J; Zhang Y; Wang J; Tan F; Liu J; Cai Y; Qian X Rapid Commun Mass Spectrom; 2008 Apr; 22(7):1069-80. PubMed ID: 18327884 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]