These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
218 related articles for article (PubMed ID: 24401440)
41. Zinc Ion-immobilized Magnetic Microspheres for Enrichment and Identification of Multi-phosphorylated Peptides by Mass Spectrometry. Bae SW; Kim JI; Choi I; Sung J; Hong JI; Yeo WS Anal Sci; 2017; 33(12):1381-1386. PubMed ID: 29225228 [TBL] [Abstract][Full Text] [Related]
42. [Preparation of zirconia nanoparticles deposited cotton fibers and their application in the rapid enrichment of phosphopeptides]. Yu Q; Fang K; He X; Zheng J; Feng Y Se Pu; 2018 Mar; 36(3):237-244. PubMed ID: 30136501 [TBL] [Abstract][Full Text] [Related]
43. Enrichment and analysis of phosphopeptides under different experimental conditions using titanium dioxide affinity chromatography and mass spectrometry. Aryal UK; Ross AR Rapid Commun Mass Spectrom; 2010 Jan; 24(2):219-31. PubMed ID: 20014058 [TBL] [Abstract][Full Text] [Related]
44. Zirconium arsenate-modified silica nanoparticles for specific capture of phosphopeptides and direct analysis by matrix-assisted laser desorption/ionization mass spectrometry. Zhao PX; Guo XF; Wang H; Qi CB; Xia HS; Zhang HS Anal Bioanal Chem; 2012 Jan; 402(3):1041-56. PubMed ID: 22105300 [TBL] [Abstract][Full Text] [Related]
45. Phosphopeptide screening using nanocrystalline titanium dioxide films as affinity matrix-assisted laser desorption ionization targets in mass spectrometry. Niklew ML; Hochkirch U; Melikyan A; Moritz T; Kurzawski S; Schlüter H; Ebner I; Linscheid MW Anal Chem; 2010 Feb; 82(3):1047-53. PubMed ID: 20067263 [TBL] [Abstract][Full Text] [Related]
46. Two-step on-particle ionization/enrichment via a washing- and separation-free approach: multifunctional TiO2 nanoparticles as desalting, accelerating, and affinity probes for microwave-assisted tryptic digestion of phosphoproteins in ESI-MS and MALDI-MS: comparison with microscale TiO2. Hasan N; Wu HF; Li YH; Nawaz M Anal Bioanal Chem; 2010 Apr; 396(8):2909-19. PubMed ID: 20232060 [TBL] [Abstract][Full Text] [Related]
47. Development of immobilized Sn Lin H; Deng C Proteomics; 2016 Nov; 16(21):2733-2741. PubMed ID: 27650410 [TBL] [Abstract][Full Text] [Related]
48. Ultrasensitive enrichment of phosphopeptides with Ti(4+) immobilized SiO2 graphene-like multilayer nanosheets. Xu D; Gao M; Deng C; Zhang X Analyst; 2016 May; 141(11):3421-7. PubMed ID: 27136976 [TBL] [Abstract][Full Text] [Related]
49. Efficient enrichment of phosphopeptides by magnetic TiO₂-coated carbon-encapsulated iron nanoparticles. Zeng YY; Chen HJ; Shiau KJ; Hung SU; Wang YS; Wu CC Proteomics; 2012 Feb; 12(3):380-90. PubMed ID: 22144111 [TBL] [Abstract][Full Text] [Related]
50. One-pot synthesis of dopamine dithiocarbamate functionalized gold nanoparticles for quantitative analysis of small molecules and phosphopeptides in SALDI- and MALDI-MS. Kailasa SK; Wu HF Analyst; 2012 Apr; 137(7):1629-38. PubMed ID: 22353931 [TBL] [Abstract][Full Text] [Related]
51. Enrichment of phosphopeptides by Fe3+-immobilized magnetic nanoparticles for phosphoproteome analysis of the plasma membrane of mouse liver. Tan F; Zhang Y; Mi W; Wang J; Wei J; Cai Y; Qian X J Proteome Res; 2008 Mar; 7(3):1078-87. PubMed ID: 18266315 [TBL] [Abstract][Full Text] [Related]
52. Hydrophilic Nb⁵⁺-immobilized magnetic core-shell microsphere--A novel immobilized metal ion affinity chromatography material for highly selective enrichment of phosphopeptides. Sun X; Liu X; Feng J; Li Y; Deng C; Duan G Anal Chim Acta; 2015 Jun; 880():67-76. PubMed ID: 26092339 [TBL] [Abstract][Full Text] [Related]
53. Gadolinium oxide: Exclusive selectivity and sensitivity in the enrichment of phosphorylated biomolecules. Jabeen F; Najam-Ul-Haq M; Ashiq MN; Rainer M; Huck CW; Bonn GK J Sep Sci; 2016 Nov; 39(21):4175-4182. PubMed ID: 27592854 [TBL] [Abstract][Full Text] [Related]
54. Enrichment of phosphopeptides using biphasic immobilized metal affinity-reversed phase microcolumns. Schilling M; Knapp DR J Proteome Res; 2008 Sep; 7(9):4164-72. PubMed ID: 18642943 [TBL] [Abstract][Full Text] [Related]
55. Ultrathin-yttrium phosphate-shelled polyacrylate-ferriferrous oxide magnetic microspheres for rapid and selective enrichment of phosphopeptides. Sun Y; Wang HF J Chromatogr A; 2013 Nov; 1316():62-8. PubMed ID: 24128437 [TBL] [Abstract][Full Text] [Related]
56. Dynamic identification of phosphopeptides using immobilized metal ion affinity chromatography enrichment, subsequent partial beta-elimination/chemical tagging and matrix-assisted laser desorption/ionization mass spectrometric analysis. Ahn YH; Park EJ; Cho K; Kim JY; Ha SH; Ryu SH; Yoo JS Rapid Commun Mass Spectrom; 2004; 18(20):2495-501. PubMed ID: 15384178 [TBL] [Abstract][Full Text] [Related]
57. A Ti(4+)-immobilized phosphate polymer-patterned silicon substrate for on-plate selective enrichment and self-desalting of phosphopeptides. Xu L; Zhu W; Sun R; Ding Y Analyst; 2015 May; 140(9):3216-24. PubMed ID: 25788104 [TBL] [Abstract][Full Text] [Related]
58. Development of Gd Jiang D; Li X; Ma J; Jia Q Talanta; 2018 Apr; 180():368-375. PubMed ID: 29332825 [TBL] [Abstract][Full Text] [Related]
59. Optimizing the performance of tin dioxide microspheres for phosphopeptide enrichment. Leitner A; Sturm M; Smått JH; Järn M; Lindén M; Mechtler K; Lindner W Anal Chim Acta; 2009 Apr; 638(1):51-7. PubMed ID: 19298879 [TBL] [Abstract][Full Text] [Related]
60. Development of a titanium dioxide nanoparticle pipette-tip for the selective enrichment of phosphorylated peptides. Hsieh HC; Sheu C; Shi FK; Li DT J Chromatogr A; 2007 Sep; 1165(1-2):128-35. PubMed ID: 17714720 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]