These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 24401623)
1. [Magnetic resonance imaging study of effects of accommodation on human lens morphological characters]. Zheng SL; Zhang A; Shi JJ; Zhou YX Zhonghua Yi Xue Za Zhi; 2013 Nov; 93(41):3280-3. PubMed ID: 24401623 [TBL] [Abstract][Full Text] [Related]
2. Magnetic resonance imaging study of the effects of age and accommodation on the human lens cross-sectional area. Strenk SA; Strenk LM; Semmlow JL; DeMarco JK Invest Ophthalmol Vis Sci; 2004 Feb; 45(2):539-45. PubMed ID: 14744896 [TBL] [Abstract][Full Text] [Related]
3. Changes in ocular dimensions and refraction with accommodation. Garner LF; Yap MK Ophthalmic Physiol Opt; 1997 Jan; 17(1):12-7. PubMed ID: 9135807 [TBL] [Abstract][Full Text] [Related]
4. Three-dimensional magnetic resonance imaging of the phakic crystalline lens during accommodation. Sheppard AL; Evans CJ; Singh KD; Wolffsohn JS; Dunne MC; Davies LN Invest Ophthalmol Vis Sci; 2011 Jun; 52(6):3689-97. PubMed ID: 21296812 [TBL] [Abstract][Full Text] [Related]
5. MRI study of the changes in crystalline lens shape with accommodation and aging in humans. Kasthurirangan S; Markwell EL; Atchison DA; Pope JM J Vis; 2011 Mar; 11(3):. PubMed ID: 21441300 [TBL] [Abstract][Full Text] [Related]
6. Constant volume of the human lens and decrease in surface area of the capsular bag during accommodation: an MRI and Scheimpflug study. Hermans EA; Pouwels PJ; Dubbelman M; Kuijer JP; van der Heijde RG; Heethaar RM Invest Ophthalmol Vis Sci; 2009 Jan; 50(1):281-9. PubMed ID: 18676625 [TBL] [Abstract][Full Text] [Related]
7. Accommodation and presbyopia in the human eye. Changes in the anterior segment and crystalline lens with focus. Koretz JF; Cook CA; Kaufman PL Invest Ophthalmol Vis Sci; 1997 Mar; 38(3):569-78. PubMed ID: 9071209 [TBL] [Abstract][Full Text] [Related]
8. Noninvasive imaging and measurement of accommodation using dual-channel SD-OCT. Sun Y; Fan S; Zheng H; Dai C; Ren Q; Zhou C Curr Eye Res; 2014 Jun; 39(6):611-9. PubMed ID: 24206216 [TBL] [Abstract][Full Text] [Related]
9. A longitudinal study of accommodative changes in biometry during incipient presbyopia. Laughton DS; Sheppard AL; Davies LN Ophthalmic Physiol Opt; 2016 Jan; 36(1):33-42. PubMed ID: 26432063 [TBL] [Abstract][Full Text] [Related]
10. Pseudophakic accommodation with translation lenses--dual optic vs mono optic. Langenbucher A; Reese S; Jakob C; Seitz B Ophthalmic Physiol Opt; 2004 Sep; 24(5):450-7. PubMed ID: 15315660 [TBL] [Abstract][Full Text] [Related]
11. Quantitative analysis of internal components of the human crystalline lens during accommodation in adults. Xiang Y; Fu T; Xu Q; Chen W; Chen Z; Guo J; Deng C; Manyande A; Wang P; Zhang H; Tian X; Wang J Sci Rep; 2021 Mar; 11(1):6688. PubMed ID: 33758264 [TBL] [Abstract][Full Text] [Related]
12. Non-invasive measurements of the dynamic changes in the ciliary muscle, crystalline lens morphology, and anterior chamber during accommodation with a high-resolution OCT. Esteve-Taboada JJ; Domínguez-Vicent A; Monsálvez-Romín D; Del Águila-Carrasco AJ; Montés-Micó R Graefes Arch Clin Exp Ophthalmol; 2017 Jul; 255(7):1385-1394. PubMed ID: 28424868 [TBL] [Abstract][Full Text] [Related]
13. Objective measurement of accommodative biometric changes using ultrasound biomicroscopy. Ramasubramanian V; Glasser A J Cataract Refract Surg; 2015 Mar; 41(3):511-26. PubMed ID: 25804579 [TBL] [Abstract][Full Text] [Related]
14. Changes in lens dimensions and refractive index with age and accommodation. Jones CE; Atchison DA; Pope JM Optom Vis Sci; 2007 Oct; 84(10):990-5. PubMed ID: 18049365 [TBL] [Abstract][Full Text] [Related]
15. Ocular anterior segment biometry and high-order wavefront aberrations during accommodation. Yuan Y; Shao Y; Tao A; Shen M; Wang J; Shi G; Chen Q; Zhu D; Lian Y; Qu J; Zhang Y; Lu F Invest Ophthalmol Vis Sci; 2013 Oct; 54(10):7028-37. PubMed ID: 24065809 [TBL] [Abstract][Full Text] [Related]
16. Ultrasound measures of vitreous chamber depth during ocular accommodation. Beauchamp R; Mitchell B Am J Optom Physiol Opt; 1985 Aug; 62(8):523-32. PubMed ID: 4037058 [TBL] [Abstract][Full Text] [Related]
17. Slit-lamp studies of the rhesus monkey eye: II. Changes in crystalline lens shape, thickness and position during accommodation and aging. Koretz JF; Bertasso AM; Neider MW; True-Gabelt BA; Kaufman PL Exp Eye Res; 1987 Aug; 45(2):317-26. PubMed ID: 3653294 [TBL] [Abstract][Full Text] [Related]
18. Simultaneous measurements of refraction and A-scan biometry during accommodation in humans. Ostrin L; Kasthurirangan S; Win-Hall D; Glasser A Optom Vis Sci; 2006 Sep; 83(9):657-65. PubMed ID: 16971844 [TBL] [Abstract][Full Text] [Related]
19. Changes in equivalent and gradient refractive index of the crystalline lens with accommodation. Garner LF; Smith G Optom Vis Sci; 1997 Feb; 74(2):114-9. PubMed ID: 9097329 [TBL] [Abstract][Full Text] [Related]
20. Quantitative analysis of animal model lens anatomy: accommodative range is related to fiber structure and organization. Kuszak JR; Mazurkiewicz M; Jison L; Madurski A; Ngando A; Zoltoski RK Vet Ophthalmol; 2006; 9(5):266-80. PubMed ID: 16939454 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]