These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

391 related articles for article (PubMed ID: 24401904)

  • 1. Plasmon-enhanced water splitting on TiO2-passivated GaP photocatalysts.
    Qiu J; Zeng G; Pavaskar P; Li Z; Cronin SB
    Phys Chem Chem Phys; 2014 Feb; 16(7):3115-21. PubMed ID: 24401904
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plasmonic enhancement of visible-light water splitting with Au-TiO2 composite aerogels.
    DeSario PA; Pietron JJ; DeVantier DE; Brintlinger TH; Stroud RM; Rolison DR
    Nanoscale; 2013 Sep; 5(17):8073-83. PubMed ID: 23877169
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three-dimensional plasmonic photoanodes based on Au-embedded TiO(2) structures for enhanced visible-light water splitting.
    Zhan Z; An J; Zhang H; Hansen RV; Zheng L
    ACS Appl Mater Interfaces; 2014 Jan; 6(2):1139-44. PubMed ID: 24392835
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering the Absorption and Field Enhancement Properties of Au-TiO2 Nanohybrids via Whispering Gallery Mode Resonances for Photocatalytic Water Splitting.
    Zhang J; Jin X; Morales-Guzman PI; Yu X; Liu H; Zhang H; Razzari L; Claverie JP
    ACS Nano; 2016 Apr; 10(4):4496-503. PubMed ID: 27054374
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon resonant enhancement of photocatalytic water splitting under visible illumination.
    Liu Z; Hou W; Pavaskar P; Aykol M; Cronin SB
    Nano Lett; 2011 Mar; 11(3):1111-6. PubMed ID: 21319840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Harvesting Hot Holes in Plasmon-Coupled Ultrathin Photoanodes for High-Performance Photoelectrochemical Water Splitting.
    Vahidzadeh E; Zeng S; Alam KM; Kumar P; Riddell S; Chaulagain N; Gusarov S; Kobryn AE; Shankar K
    ACS Appl Mater Interfaces; 2021 Sep; 13(36):42741-42752. PubMed ID: 34476945
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene supported plasmonic photocatalyst for hydrogen evolution in photocatalytic water splitting.
    Singh GP; Shrestha KM; Nepal A; Klabunde KJ; Sorensen CM
    Nanotechnology; 2014 Jul; 25(26):265701. PubMed ID: 24916183
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficiency Enhancement of Nanotextured Black Silicon Solar Cells Using Al2O3/TiO2 Dual-Layer Passivation Stack Prepared by Atomic Layer Deposition.
    Wang WC; Tsai MC; Yang J; Hsu C; Chen MJ
    ACS Appl Mater Interfaces; 2015 May; 7(19):10228-37. PubMed ID: 25919200
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spiky TiO
    Sun H; Zeng S; He Q; She P; Xu K; Liu Z
    Dalton Trans; 2017 Mar; 46(12):3887-3894. PubMed ID: 28262883
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface Plasmon Enhanced Photocatalysis of Au/Pt-decorated TiO2 Nanopillar Arrays.
    Shuang S; Lv R; Xie Z; Zhang Z
    Sci Rep; 2016 May; 6():26670. PubMed ID: 27215703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation.
    Lu Y; Dong W; Chen Z; Pors A; Wang Z; Bozhevolnyi SI
    Sci Rep; 2016 Jul; 6():30650. PubMed ID: 27470207
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with Au nanoparticle as electron relay and plasmonic photosensitizer.
    Li J; Cushing SK; Zheng P; Senty T; Meng F; Bristow AD; Manivannan A; Wu N
    J Am Chem Soc; 2014 Jun; 136(23):8438-49. PubMed ID: 24836347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation of reactive oxygen species and charge carriers in plasmonic photocatalytic Au@TiO
    He W; Cai J; Jiang X; Yin JJ; Meng Q
    Phys Chem Chem Phys; 2018 Jun; 20(23):16117-16125. PubMed ID: 29855003
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct evidence of plasmon enhancement on photocatalytic hydrogen generation over Au/Pt-decorated TiO2 nanofibers.
    Zhang Z; Li A; Cao SW; Bosman M; Li S; Xue C
    Nanoscale; 2014 May; 6(10):5217-22. PubMed ID: 24687039
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surface Plasmon-Induced Hot Carriers: Generation, Detection, and Applications.
    Lee H; Park Y; Song K; Park JY
    Acc Chem Res; 2022 Dec; 55(24):3727-3737. PubMed ID: 36473156
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhanced Photocatalytic Reduction of CO2 to CO through TiO2 Passivation of InP in Ionic Liquids.
    Zeng G; Qiu J; Hou B; Shi H; Lin Y; Hettick M; Javey A; Cronin SB
    Chemistry; 2015 Sep; 21(39):13502-7. PubMed ID: 26224665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plasmon enhanced water splitting mediated by hybrid bimetallic Au-Ag core-shell nanostructures.
    Erwin WR; Coppola A; Zarick HF; Arora P; Miller KJ; Bardhan R
    Nanoscale; 2014 Nov; 6(21):12626-34. PubMed ID: 25188374
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plasmonic Pt nanoparticles-TiO
    Qin L; Wang G; Tan Y
    Sci Rep; 2018 Nov; 8(1):16198. PubMed ID: 30385808
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen evolution from water based on plasmon-induced charge separation at a TiO
    Kao KC; Kuroiwa Y; Nishi H; Tatsuma T
    Phys Chem Chem Phys; 2017 Nov; 19(46):31429-31435. PubMed ID: 29159348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Plasmon-enhanced photoelectrochemical water splitting with size-controllable gold nanodot arrays.
    Kim HJ; Lee SH; Upadhye AA; Ro I; Tejedor-Tejedor MI; Anderson MA; Kim WB; Huber GW
    ACS Nano; 2014 Oct; 8(10):10756-65. PubMed ID: 25268767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.