These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

296 related articles for article (PubMed ID: 24401912)

  • 1. USB-driven microfluidic chips on printed circuit boards.
    Li J; Wang Y; Dong E; Chen H
    Lab Chip; 2014 Mar; 14(5):860-4. PubMed ID: 24401912
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A microfluidic chip for formation and collection of emulsion droplets utilizing active pneumatic micro-choppers and micro-switches.
    Lai CW; Lin YH; Lee GB
    Biomed Microdevices; 2008 Oct; 10(5):749-56. PubMed ID: 18484177
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatically-driven elastomer components for user-reconfigurable high density microfluidics.
    Chang MP; Maharbiz MM
    Lab Chip; 2009 May; 9(9):1274-81. PubMed ID: 19370248
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modular integration of electronics and microfluidic systems using flexible printed circuit boards.
    Wu A; Wang L; Jensen E; Mathies R; Boser B
    Lab Chip; 2010 Feb; 10(4):519-21. PubMed ID: 20126694
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial tension controlled W/O and O/W 2-phase flows in microchannel.
    Shui L; van den Berg A; Eijkel JC
    Lab Chip; 2009 Mar; 9(6):795-801. PubMed ID: 19255661
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Formation and stability of nanoparticle-stabilised oil-in-water emulsions in a microfluidic chip.
    Priest C; Reid MD; Whitby CP
    J Colloid Interface Sci; 2011 Nov; 363(1):301-6. PubMed ID: 21840529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Capacitance variation induced by microfluidic two-phase flow across insulated interdigital electrodes in lab-on-chip devices.
    Dong T; Barbosa C
    Sensors (Basel); 2015 Jan; 15(2):2694-708. PubMed ID: 25629705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High-volume production of single and compound emulsions in a microfluidic parallelization arrangement coupled with coaxial annular world-to-chip interfaces.
    Nisisako T; Ando T; Hatsuzawa T
    Lab Chip; 2012 Sep; 12(18):3426-35. PubMed ID: 22806835
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrocoalescence mechanisms of microdroplets using localized electric fields in microfluidic channels.
    Zagnoni M; Le Lain G; Cooper JM
    Langmuir; 2010 Sep; 26(18):14443-9. PubMed ID: 20731333
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic pH-sensing chips integrated with pneumatic fluid-control devices.
    Lin CF; Lee GB; Wang CH; Lee HH; Liao WY; Chou TC
    Biosens Bioelectron; 2006 Feb; 21(8):1468-75. PubMed ID: 16099154
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrated microfluidic system with simultaneous emulsion generation and concentration.
    Koppula KS; Fan R; Veerapalli KR; Wan J
    J Colloid Interface Sci; 2016 Mar; 466():162-7. PubMed ID: 26722797
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Combinatorial generation of droplets by controlled assembly and coalescence.
    Um E; Rogers ME; Stone HA
    Lab Chip; 2013 Dec; 13(23):4674-80. PubMed ID: 24132051
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid purification of cell encapsulated hydrogel beads from oil phase to aqueous phase in a microfluidic device.
    Deng Y; Zhang N; Zhao L; Yu X; Ji X; Liu W; Guo S; Liu K; Zhao XZ
    Lab Chip; 2011 Dec; 11(23):4117-21. PubMed ID: 22012540
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of pressure-driven microfluidic networks using electric circuit analogy.
    Oh KW; Lee K; Ahn B; Furlani EP
    Lab Chip; 2012 Feb; 12(3):515-45. PubMed ID: 22179505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Water-oil core-shell droplets for electrowetting-based digital microfluidic devices.
    Brassard D; Malic L; Normandin F; Tabrizian M; Veres T
    Lab Chip; 2008 Aug; 8(8):1342-9. PubMed ID: 18651077
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On-demand droplet release for droplet-based microfluidic system.
    Wang W; Yang C; Liu Y; Li CM
    Lab Chip; 2010 Mar; 10(5):559-62. PubMed ID: 20162230
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Smart Active Phase-Change Micropump Based on CMOS-MEMS Technology.
    Jin W; Guan Y; Wang Q; Huang P; Zhou Q; Wang K; Liu D
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299932
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrostatic charging and control of droplets in microfluidic devices.
    Zhou H; Yao S
    Lab Chip; 2013 Mar; 13(5):962-9. PubMed ID: 23338121
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fast on-demand droplet fusion using transient cavitation bubbles.
    Li ZG; Ando K; Yu JQ; Liu AQ; Zhang JB; Ohl CD
    Lab Chip; 2011 Jun; 11(11):1879-85. PubMed ID: 21487578
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-demand generation of monodisperse femtolitre droplets by shape-induced shear.
    Jung SY; Retterer ST; Collier CP
    Lab Chip; 2010 Oct; 10(20):2688-94. PubMed ID: 20721397
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.