BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 24401958)

  • 1. Excess electrons in ice: a density functional theory study.
    Bhattacharya SK; Inam F; Scandolo S
    Phys Chem Chem Phys; 2014 Feb; 16(7):3103-7. PubMed ID: 24401958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics and reactivity of trapped electrons on supported ice crystallites.
    Stähler J; Gahl C; Wolf M
    Acc Chem Res; 2012 Jan; 45(1):131-8. PubMed ID: 22185698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model calculation of coherence effects in the elastic backscattering of very low energy electrons (1-20 eV) from amorphous ice.
    Liljequist D
    Int J Radiat Biol; 2012 Jan; 88(1-2):50-3. PubMed ID: 21615241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface trapped excess electrons on ice.
    Baletto F; Cavazzoni C; Scandolo S
    Phys Rev Lett; 2005 Oct; 95(17):176801. PubMed ID: 16383853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation effects in water ice: a near-edge x-ray absorption fine structure study.
    Laffon C; Lacombe S; Bournel F; Parent P
    J Chem Phys; 2006 Nov; 125(20):204714. PubMed ID: 17144730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic structures and hydrogen bond network of high-density and very high-density amorphous ices.
    He C; Lian JS; Jiang Q
    J Phys Chem B; 2005 Oct; 109(42):19893-6. PubMed ID: 16853572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CCl(4) dissociation on the ice I(h) surface: an excess electron mediated process.
    Bhattacharya SK; Finn JM; Diep VP; Baletto F; Scandolo S
    Phys Chem Chem Phys; 2010 Oct; 12(40):13034-6. PubMed ID: 20820567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics.
    Marsalek O; Uhlig F; VandeVondele J; Jungwirth P
    Acc Chem Res; 2012 Jan; 45(1):23-32. PubMed ID: 21899274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the electron's solvation site on D2O/Cu(111) using Xe overlayers and femtosecond photoelectron spectroscopy.
    Meyer M; Stähler J; Kusmierek DO; Wolf M; Bovensiepen U
    Phys Chem Chem Phys; 2008 Aug; 10(32):4932-8. PubMed ID: 18688537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast dynamics of electron localization and solvation in ice layers on Cu(111).
    Gahl C; Bovensiepen U; Frischkorn C; Wolf M
    Phys Rev Lett; 2002 Sep; 89(10):107402. PubMed ID: 12225225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A surface science approach to ultrafast electron transfer and solvation dynamics at interfaces.
    Stähler J; Bovensiepen U; Meyer M; Wolf M
    Chem Soc Rev; 2008 Oct; 37(10):2180-90. PubMed ID: 18818821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase transition study of confined water molecules inside carbon nanotubes: hierarchical multiscale method from molecular dynamics simulation to ab initio calculation.
    Javadian S; Taghavi F; Yari F; Hashemianzadeh SM
    J Mol Graph Model; 2012 Sep; 38():40-9. PubMed ID: 23085156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water hydrogen bond structure near highly charged interfaces is not like ice.
    Nihonyanagi S; Yamaguchi S; Tahara T
    J Am Chem Soc; 2010 May; 132(20):6867-9. PubMed ID: 20429561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and sublimation of water ice films grown in vacuo at 120-190 K studied by positron and positronium annihilation.
    Townrow S; Coleman PG
    J Phys Condens Matter; 2014 Mar; 26(12):125402. PubMed ID: 24599176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of the structure of amorphous ice: from low-density amorphous through high-density amorphous to very high-density amorphous ice.
    Martonák R; Donadio D; Parrinello M
    J Chem Phys; 2005 Apr; 122(13):134501. PubMed ID: 15847475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystalline ice growth on Pt(111) and Pd(111): nonwetting growth on a hydrophobic water monolayer.
    Kimmel GA; Petrik NG; Dohnálek Z; Kay BD
    J Chem Phys; 2007 Mar; 126(11):114702. PubMed ID: 17381223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio molecular dynamics simulation of a medium-sized water cluster anion: from an interior to a surface-located excess electron via a delocalized state.
    Frigato T; VandeVondele J; Schmidt B; Schütte C; Jungwirth P
    J Phys Chem A; 2008 Jul; 112(27):6125-33. PubMed ID: 18547038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular-dynamics study of photodissociation of water in crystalline and amorphous ices.
    Andersson S; Al-Halabi A; Kroes GJ; van Dishoeck EF
    J Chem Phys; 2006 Feb; 124(6):64715. PubMed ID: 16483237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The photoexcitation of crystalline ice and amorphous solid water: A molecular dynamics study of outcomes at 11 K and 125 K.
    Crouse J; Loock HP; Cann NM
    J Chem Phys; 2015 Jul; 143(3):034502. PubMed ID: 26203031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.