These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 24401958)

  • 1. Excess electrons in ice: a density functional theory study.
    Bhattacharya SK; Inam F; Scandolo S
    Phys Chem Chem Phys; 2014 Feb; 16(7):3103-7. PubMed ID: 24401958
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Highly confined water: two-dimensional ice, amorphous ice, and clathrate hydrates.
    Zhao WH; Wang L; Bai J; Yuan LF; Yang J; Zeng XC
    Acc Chem Res; 2014 Aug; 47(8):2505-13. PubMed ID: 25088018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamics and reactivity of trapped electrons on supported ice crystallites.
    Stähler J; Gahl C; Wolf M
    Acc Chem Res; 2012 Jan; 45(1):131-8. PubMed ID: 22185698
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A model calculation of coherence effects in the elastic backscattering of very low energy electrons (1-20 eV) from amorphous ice.
    Liljequist D
    Int J Radiat Biol; 2012 Jan; 88(1-2):50-3. PubMed ID: 21615241
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Surface trapped excess electrons on ice.
    Baletto F; Cavazzoni C; Scandolo S
    Phys Rev Lett; 2005 Oct; 95(17):176801. PubMed ID: 16383853
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Radiation effects in water ice: a near-edge x-ray absorption fine structure study.
    Laffon C; Lacombe S; Bournel F; Parent P
    J Chem Phys; 2006 Nov; 125(20):204714. PubMed ID: 17144730
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electronic structures and hydrogen bond network of high-density and very high-density amorphous ices.
    He C; Lian JS; Jiang Q
    J Phys Chem B; 2005 Oct; 109(42):19893-6. PubMed ID: 16853572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. CCl(4) dissociation on the ice I(h) surface: an excess electron mediated process.
    Bhattacharya SK; Finn JM; Diep VP; Baletto F; Scandolo S
    Phys Chem Chem Phys; 2010 Oct; 12(40):13034-6. PubMed ID: 20820567
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, dynamics, and reactivity of hydrated electrons by ab initio molecular dynamics.
    Marsalek O; Uhlig F; VandeVondele J; Jungwirth P
    Acc Chem Res; 2012 Jan; 45(1):23-32. PubMed ID: 21899274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the electron's solvation site on D2O/Cu(111) using Xe overlayers and femtosecond photoelectron spectroscopy.
    Meyer M; Stähler J; Kusmierek DO; Wolf M; Bovensiepen U
    Phys Chem Chem Phys; 2008 Aug; 10(32):4932-8. PubMed ID: 18688537
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast dynamics of electron localization and solvation in ice layers on Cu(111).
    Gahl C; Bovensiepen U; Frischkorn C; Wolf M
    Phys Rev Lett; 2002 Sep; 89(10):107402. PubMed ID: 12225225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A surface science approach to ultrafast electron transfer and solvation dynamics at interfaces.
    Stähler J; Bovensiepen U; Meyer M; Wolf M
    Chem Soc Rev; 2008 Oct; 37(10):2180-90. PubMed ID: 18818821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Phase transition study of confined water molecules inside carbon nanotubes: hierarchical multiscale method from molecular dynamics simulation to ab initio calculation.
    Javadian S; Taghavi F; Yari F; Hashemianzadeh SM
    J Mol Graph Model; 2012 Sep; 38():40-9. PubMed ID: 23085156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Water hydrogen bond structure near highly charged interfaces is not like ice.
    Nihonyanagi S; Yamaguchi S; Tahara T
    J Am Chem Soc; 2010 May; 132(20):6867-9. PubMed ID: 20429561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure and sublimation of water ice films grown in vacuo at 120-190 K studied by positron and positronium annihilation.
    Townrow S; Coleman PG
    J Phys Condens Matter; 2014 Mar; 26(12):125402. PubMed ID: 24599176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolution of the structure of amorphous ice: from low-density amorphous through high-density amorphous to very high-density amorphous ice.
    Martonák R; Donadio D; Parrinello M
    J Chem Phys; 2005 Apr; 122(13):134501. PubMed ID: 15847475
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Crystalline ice growth on Pt(111) and Pd(111): nonwetting growth on a hydrophobic water monolayer.
    Kimmel GA; Petrik NG; Dohnálek Z; Kay BD
    J Chem Phys; 2007 Mar; 126(11):114702. PubMed ID: 17381223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ab initio molecular dynamics simulation of a medium-sized water cluster anion: from an interior to a surface-located excess electron via a delocalized state.
    Frigato T; VandeVondele J; Schmidt B; Schütte C; Jungwirth P
    J Phys Chem A; 2008 Jul; 112(27):6125-33. PubMed ID: 18547038
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular-dynamics study of photodissociation of water in crystalline and amorphous ices.
    Andersson S; Al-Halabi A; Kroes GJ; van Dishoeck EF
    J Chem Phys; 2006 Feb; 124(6):64715. PubMed ID: 16483237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The photoexcitation of crystalline ice and amorphous solid water: A molecular dynamics study of outcomes at 11 K and 125 K.
    Crouse J; Loock HP; Cann NM
    J Chem Phys; 2015 Jul; 143(3):034502. PubMed ID: 26203031
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.