These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 24402032)

  • 21. Prokaryotic genome regulation: multifactor promoters, multitarget regulators and hierarchic networks.
    Ishihama A
    FEMS Microbiol Rev; 2010 Sep; 34(5):628-45. PubMed ID: 20491932
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Controllability analysis of transcriptional regulatory networks reveals circular control patterns among transcription factors.
    Österlund T; Bordel S; Nielsen J
    Integr Biol (Camb); 2015 May; 7(5):560-8. PubMed ID: 25855217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Metabolic flux analysis for Escherichia coli by flux balance analysis.
    Matsuoka Y; Shimizu K
    Methods Mol Biol; 2014; 1191():237-60. PubMed ID: 25178795
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The hierarchic network of metal-response transcription factors in Escherichia coli.
    Yamamoto K
    Biosci Biotechnol Biochem; 2014; 78(5):737-47. PubMed ID: 25035972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hierarchical organization of fluxes in Escherichia coli metabolic network: using flux coupling analysis for understanding the physiological properties of metabolic genes.
    Hosseini Z; Marashi SA
    Gene; 2015 May; 561(2):199-208. PubMed ID: 25688882
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of DNA-binding specificity in the evolution of bacterial regulatory networks.
    Lozada-Chávez I; Angarica VE; Collado-Vides J; Contreras-Moreira B
    J Mol Biol; 2008 Jun; 379(3):627-43. PubMed ID: 18466918
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphlet Based Metrics for the Comparison of Gene Regulatory Networks.
    Martin AJ; Dominguez C; Contreras-Riquelme S; Holmes DS; Perez-Acle T
    PLoS One; 2016; 11(10):e0163497. PubMed ID: 27695050
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of protein species and weighted protein co-expression network regulation of Escherichia coli in response to serum killing using a 2-DE based proteomics approach.
    Guo C; Liu XJ; Cheng ZX; Liu YJ; Li H; Peng X
    Mol Biosyst; 2014 Mar; 10(3):475-84. PubMed ID: 24366695
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Periodic synchronization of isolated network elements facilitates simulating and inferring gene regulatory networks including stochastic molecular kinetics.
    Hettich J; Gebhardt JCM
    BMC Bioinformatics; 2022 Jan; 23(1):13. PubMed ID: 34986805
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The correlation between architecture and mRNA abundance in the genetic regulatory network of Escherichia coli.
    Grondin Y; Raine DJ; Norris V
    BMC Syst Biol; 2007 Jul; 1():30. PubMed ID: 17640329
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The global transcriptional regulatory network for metabolism in Escherichia coli exhibits few dominant functional states.
    Barrett CL; Herring CD; Reed JL; Palsson BO
    Proc Natl Acad Sci U S A; 2005 Dec; 102(52):19103-8. PubMed ID: 16357206
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles.
    Faith JJ; Hayete B; Thaden JT; Mogno I; Wierzbowski J; Cottarel G; Kasif S; Collins JJ; Gardner TS
    PLoS Biol; 2007 Jan; 5(1):e8. PubMed ID: 17214507
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differential producibility analysis (DPA) of transcriptomic data with metabolic networks: deconstructing the metabolic response of M. tuberculosis.
    Bonde BK; Beste DJ; Laing E; Kierzek AM; McFadden J
    PLoS Comput Biol; 2011 Jun; 7(6):e1002060. PubMed ID: 21738454
    [TBL] [Abstract][Full Text] [Related]  

  • 34. PEPN-GRN: A Petri net-based approach for the inference of gene regulatory networks from noisy gene expression data.
    Vatsa D; Agarwal S
    PLoS One; 2021; 16(5):e0251666. PubMed ID: 33989333
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transcriptional regulation in constraints-based metabolic models of Escherichia coli.
    Covert MW; Palsson BØ
    J Biol Chem; 2002 Aug; 277(31):28058-64. PubMed ID: 12006566
    [TBL] [Abstract][Full Text] [Related]  

  • 36. TRaCE+: Ensemble inference of gene regulatory networks from transcriptional expression profiles of gene knock-out experiments.
    Ud-Dean SM; Heise S; Klamt S; Gunawan R
    BMC Bioinformatics; 2016 Jun; 17():252. PubMed ID: 27342648
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Evolution of the metabolic and regulatory networks associated with oxygen availability in two phytopathogenic enterobacteria.
    Babujee L; Apodaca J; Balakrishnan V; Liss P; Kiley PJ; Charkowski AO; Glasner JD; Perna NT
    BMC Genomics; 2012 Mar; 13():110. PubMed ID: 22439737
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Robust stability analysis and design under consideration of multiple feedback loops of the tryptophan regulatory network of Escherichia coli.
    Meyer-Baese A; Theis F; Emmett MR
    Adv Exp Med Biol; 2010; 680():189-97. PubMed ID: 20865501
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Retarded RNA turnover in Escherichia coli: a means of maintaining gene expression during anaerobiosis.
    Georgellis D; Barlow T; Arvidson S; von Gabain A
    Mol Microbiol; 1993 Jul; 9(2):375-81. PubMed ID: 7692218
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Latent pathway activation and increased pathway capacity enable Escherichia coli adaptation to loss of key metabolic enzymes.
    Fong SS; Nanchen A; Palsson BO; Sauer U
    J Biol Chem; 2006 Mar; 281(12):8024-33. PubMed ID: 16319065
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.