BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

293 related articles for article (PubMed ID: 24402332)

  • 1. Engineering lipase A from mesophilic Bacillus subtilis for activity at low temperatures.
    Kumar V; Yedavalli P; Gupta V; Rao NM
    Protein Eng Des Sel; 2014 Mar; 27(3):73-82. PubMed ID: 24402332
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Just an additional hydrogen bond can dramatically reduce the catalytic activity of Bacillus subtilis lipase A I12T mutant: an integration of computational modeling and experimental analysis.
    Ni Z; Jin R; Chen H; Lin X
    Comput Biol Med; 2013 Nov; 43(11):1882-8. PubMed ID: 24209933
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural basis of selection and thermostability of laboratory evolved Bacillus subtilis lipase.
    Acharya P; Rajakumara E; Sankaranarayanan R; Rao NM
    J Mol Biol; 2004 Aug; 341(5):1271-81. PubMed ID: 15321721
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Engineering the loops in a lipase for stability in DMSO.
    Yedavalli P; Rao NM
    Protein Eng Des Sel; 2013 Apr; 26(4):317-24. PubMed ID: 23404771
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding the thermostability and activity of Bacillus subtilis lipase mutants: insights from molecular dynamics simulations.
    Singh B; Bulusu G; Mitra A
    J Phys Chem B; 2015 Jan; 119(2):392-409. PubMed ID: 25495458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermostable Bacillus subtilis lipases: in vitro evolution and structural insight.
    Ahmad S; Kamal MZ; Sankaranarayanan R; Rao NM
    J Mol Biol; 2008 Aug; 381(2):324-40. PubMed ID: 18599073
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Introducing a salt bridge into the lipase of Stenotrophomonas maltophilia results in a very large increase in thermal stability.
    Wu JP; Li M; Zhou Y; Yang LR; Xu G
    Biotechnol Lett; 2015 Feb; 37(2):403-7. PubMed ID: 25257598
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Effects of One Amino Acid Substitutions at the C-Terminal Region of Thermostable L2 Lipase by Computational and Experimental Approach.
    Sani HA; Shariff FM; Rahman RNZRA; Leow TC; Salleh AB
    Mol Biotechnol; 2018 Jan; 60(1):1-11. PubMed ID: 29058211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of point mutations on the thermostability of B. subtilis lipase: investigating nonadditivity.
    Singh B; Bulusu G; Mitra A
    J Comput Aided Mol Des; 2016 Oct; 30(10):899-916. PubMed ID: 27696241
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Unscrambling thermal stability and temperature adaptation in evolved variants of a cold-active lipase.
    Gatti-Lafranconi P; Caldarazzo SM; Villa A; Alberghina L; Lotti M
    FEBS Lett; 2008 Jun; 582(15):2313-8. PubMed ID: 18534193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Relation Between Lipase Thermostability and Dynamics of Hydrogen Bond and Hydrogen Bond Network Based on Long Time Molecular Dynamics Simulation.
    Zhang L; Ding Y
    Protein Pept Lett; 2017; 24(7):643-648. PubMed ID: 28464764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Iterative saturation mutagenesis (ISM) for rapid directed evolution of functional enzymes.
    Reetz MT; Carballeira JD
    Nat Protoc; 2007; 2(4):891-903. PubMed ID: 17446890
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based engineering of histidine residues in the catalytic domain of α-amylase from Bacillus subtilis for improved protein stability and catalytic efficiency under acidic conditions.
    Yang H; Liu L; Shin HD; Chen RR; Li J; Du G; Chen J
    J Biotechnol; 2013 Mar; 164(1):59-66. PubMed ID: 23262127
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contribution of single amino acid and codon substitutions to the production and secretion of a lipase by Bacillus subtilis.
    Skoczinski P; Volkenborn K; Fulton A; Bhadauriya A; Nutschel C; Gohlke H; Knapp A; Jaeger KE
    Microb Cell Fact; 2017 Sep; 16(1):160. PubMed ID: 28946879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutatomics analysis of the systematic thermostability profile of Bacillus subtilis lipase A.
    Tian F; Yang C; Wang C; Guo T; Zhou P
    J Mol Model; 2014 Jun; 20(6):2257. PubMed ID: 24827611
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization and a point mutational approach of a psychrophilic lipase from an arctic bacterium, Bacillus pumilus.
    Wi AR; Jeon SJ; Kim S; Park HJ; Kim D; Han SJ; Yim JH; Kim HW
    Biotechnol Lett; 2014 Jun; 36(6):1295-302. PubMed ID: 24563306
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In vitro evolved non-aggregating and thermostable lipase: structural and thermodynamic investigation.
    Kamal MZ; Ahmad S; Molugu TR; Vijayalakshmi A; Deshmukh MV; Sankaranarayanan R; Rao NM
    J Mol Biol; 2011 Oct; 413(3):726-41. PubMed ID: 21925508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Involvement of Gly 311 residue on substrate discrimination, pH and temperature dependency of recombinant Staphylococcus xylosus lipase: a study with emulsified substrate.
    Mosbah H; Sayari A; Horchani H; Gargouri Y
    Protein Expr Purif; 2007 Sep; 55(1):31-9. PubMed ID: 17521919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence spectroscopic analysis of the structure and dynamics of Bacillus subtilis lipase A governing its activity profile under alkaline conditions.
    Kübler D; Ingenbosch KN; Bergmann A; Weidmann M; Hoffmann-Jacobsen K
    Eur Biophys J; 2015 Dec; 44(8):655-65. PubMed ID: 26224303
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective disruption of disulphide bonds lowered activation energy and improved catalytic efficiency in TALipB from Trichosporon asahii MSR54: MD simulations revealed flexible lid and extended substrate binding area in the mutant.
    Singh Y; Gupta N; Verma VV; Goel M; Gupta R
    Biochem Biophys Res Commun; 2016 Mar; 472(1):223-30. PubMed ID: 26930469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.