These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 24402438)

  • 1. Muscle synergies may improve optimization prediction of knee contact forces during walking.
    Walter JP; Kinney AL; Banks SA; D'Lima DD; Besier TF; Lloyd DG; Fregly BJ
    J Biomech Eng; 2014 Feb; 136(2):021031. PubMed ID: 24402438
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuromusculoskeletal Model Calibration Significantly Affects Predicted Knee Contact Forces for Walking.
    SerrancolĂ­ G; Kinney AL; Fregly BJ; Font-Llagunes JM
    J Biomech Eng; 2016 Aug; 138(8):0810011-08100111. PubMed ID: 27210105
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simultaneous prediction of muscle and contact forces in the knee during gait.
    Lin YC; Walter JP; Banks SA; Pandy MG; Fregly BJ
    J Biomech; 2010 Mar; 43(5):945-52. PubMed ID: 19962703
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subject-specific knee joint geometry improves predictions of medial tibiofemoral contact forces.
    Gerus P; Sartori M; Besier TF; Fregly BJ; Delp SL; Banks SA; Pandy MG; D'Lima DD; Lloyd DG
    J Biomech; 2013 Nov; 46(16):2778-86. PubMed ID: 24074941
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Co-simulation of neuromuscular dynamics and knee mechanics during human walking.
    Thelen DG; Won Choi K; Schmitz AM
    J Biomech Eng; 2014 Feb; 136(2):021033. PubMed ID: 24390129
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluation of predicted knee-joint muscle forces during gait using an instrumented knee implant.
    Kim HJ; Fernandez JW; Akbarshahi M; Walter JP; Fregly BJ; Pandy MG
    J Orthop Res; 2009 Oct; 27(10):1326-31. PubMed ID: 19396858
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Concurrent prediction of muscle and tibiofemoral contact forces during treadmill gait.
    Guess TM; Stylianou AP; Kia M
    J Biomech Eng; 2014 Feb; 136(2):021032. PubMed ID: 24389997
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait.
    Lin YC; Walter JP; Pandy MG
    Ann Biomed Eng; 2018 Aug; 46(8):1216-1227. PubMed ID: 29671152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of electromyography and joint moment as indicators of co-contraction.
    Knarr BA; Zeni JA; Higginson JS
    J Electromyogr Kinesiol; 2012 Aug; 22(4):607-11. PubMed ID: 22382273
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intra-Articular Knee Contact Force Estimation During Walking Using Force-Reaction Elements and Subject-Specific Joint Model.
    Jung Y; Phan CB; Koo S
    J Biomech Eng; 2016 Feb; 138(2):021016. PubMed ID: 26720762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inverse dynamic estimates of muscle recruitment and joint contact forces are more realistic when minimizing muscle activity rather than metabolic energy or contact forces.
    Zargham A; Afschrift M; De Schutter J; Jonkers I; De Groote F
    Gait Posture; 2019 Oct; 74():223-230. PubMed ID: 31563823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of musculoskeletal model parameter values on prediction of accurate knee contact forces during walking.
    SerrancolĂ­ G; Kinney AL; Fregly BJ
    Med Eng Phys; 2020 Nov; 85():35-47. PubMed ID: 33081962
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of individual muscles to hip joint contact force in normal walking.
    Correa TA; Crossley KM; Kim HJ; Pandy MG
    J Biomech; 2010 May; 43(8):1618-22. PubMed ID: 20176362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fine tuning total knee replacement contact force prediction algorithms using blinded model validation.
    Lundberg HJ; Knowlton C; Wimmer MA
    J Biomech Eng; 2013 Feb; 135(2):021015. PubMed ID: 23445060
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of medial and lateral contact force of the knee joint during normal and turning gait after total knee replacement.
    Purevsuren T; Dorj A; Kim K; Kim YH
    Proc Inst Mech Eng H; 2016 Apr; 230(4):288-97. PubMed ID: 26908641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The redundant nature of locomotor optimization laws.
    Collins JJ
    J Biomech; 1995 Mar; 28(3):251-67. PubMed ID: 7730385
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of model complexity and problem formulation on the forces in the knee calculated using optimization methods.
    Hu CC; Lu TW; Chen SC
    Biomed Eng Online; 2013 Mar; 12():20. PubMed ID: 23496903
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of a musculoskeletal model with prosthetic knee through six experimental gait trials.
    Kia M; Stylianou AP; Guess TM
    Med Eng Phys; 2014 Mar; 36(3):335-44. PubMed ID: 24418154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Individual muscle contributions to the axial knee joint contact force during normal walking.
    Sasaki K; Neptune RR
    J Biomech; 2010 Oct; 43(14):2780-4. PubMed ID: 20655046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.