BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 24402779)

  • 1. An integrated experimental and theoretical approach to the spectroscopy of organic-dye-sensitized TiO₂ heterointerfaces: disentangling the effects of aggregation, solvation, and surface protonation.
    Marotta G; Lobello MG; Anselmi C; Barozzino Consiglio G; Calamante M; Mordini A; Pastore M; De Angelis F
    Chemphyschem; 2014 Apr; 15(6):1116-25. PubMed ID: 24402779
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Adsorption properties of p-methyl red monomeric-to-pentameric dye aggregates on anatase (101) titania surfaces: first-principles calculations of dye/TiO₂ photoanode interfaces for dye-sensitized solar cells.
    Zhang L; Cole JM
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15760-6. PubMed ID: 25148140
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Modeling of Stark Effects in Organic Dye-Sensitized TiO2 Heterointerfaces.
    Pastore M; Angelis FD
    J Phys Chem Lett; 2011 Jun; 2(11):1261-7. PubMed ID: 26295419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Aggregation of organic dyes on TiO2 in dye-sensitized solar cells models: an ab initio investigation.
    Pastore M; Angelis FD
    ACS Nano; 2010 Jan; 4(1):556-62. PubMed ID: 20020758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large pi-aromatic molecules as potential sensitizers for highly efficient dye-sensitized solar cells.
    Imahori H; Umeyama T; Ito S
    Acc Chem Res; 2009 Nov; 42(11):1809-18. PubMed ID: 19408942
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of nuclear vibrations, temperature, co-adsorbed water, and dye orientation on light absorption, charge injection and recombination conditions in organic dyes on TiO2.
    Manzhos S; Segawa H; Yamashita K
    Phys Chem Chem Phys; 2013 Jan; 15(4):1141-7. PubMed ID: 23223414
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Variation in optoelectronic properties of azo dye-sensitized TiO2 semiconductor interfaces with different adsorption anchors: carboxylate, sulfonate, hydroxyl and pyridyl groups.
    Zhang L; Cole JM; Dai C
    ACS Appl Mater Interfaces; 2014 May; 6(10):7535-46. PubMed ID: 24786472
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rationalization of dye uptake on titania slides for dye-sensitized solar cells by a combined chemometric and structural approach.
    Gianotti V; Favaro G; Bonandini L; Palin L; Croce G; Boccaleri E; Artuso E; van Beek W; Barolo C; Milanesio M
    ChemSusChem; 2014 Nov; 7(11):3039-52. PubMed ID: 25274506
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling opto-electronic properties of a dye molecule in proximity of a semiconductor nanoparticle.
    Delgado A; Corni S; Goldoni G
    J Chem Phys; 2013 Jul; 139(2):024105. PubMed ID: 23862927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room-temperature preparation of nanocrystalline TiO2 films and the influence of surface properties on dye-sensitized solar energy conversion.
    Zhang D; Downing JA; Knorr FJ; McHale JL
    J Phys Chem B; 2006 Nov; 110(43):21890-8. PubMed ID: 17064155
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electronic and optical properties of the triphenylamine-based organic dye sensitized TiO2 semiconductor: insight from first principles calculations.
    Liang J; Zhu C; Cao Z
    Phys Chem Chem Phys; 2013 Sep; 15(33):13844-51. PubMed ID: 23698651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of a coadsorbent on the performance of dye-sensitized TiO2 solar cells: shielding versus band-edge movement.
    Neale NR; Kopidakis N; van de Lagemaat J; Grätzel M; Frank AJ
    J Phys Chem B; 2005 Dec; 109(49):23183-9. PubMed ID: 16375281
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Intermolecular Interactions in Dye-Sensitized Solar Cells: A Computational Modeling Perspective.
    Pastore M; De Angelis F
    J Phys Chem Lett; 2013 Mar; 4(6):956-74. PubMed ID: 26291363
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Novel Ru(II) sensitizers bearing an unsymmetrical pyridine-quinoline hybrid ligand with extended π-conjugation: synthesis and application in dye-sensitized solar cells.
    Vougioukalakis GC; Stergiopoulos T; Kontos AG; Pefkianakis EK; Papadopoulos K; Falaras P
    Dalton Trans; 2013 May; 42(18):6582-91. PubMed ID: 23474693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dye sensitization of single crystal semiconductor electrodes.
    Spitler MT; Parkinson BA
    Acc Chem Res; 2009 Dec; 42(12):2017-29. PubMed ID: 19924998
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of dye-adsorption solvent on the performances of the dye-sensitized solar cells based on black dye.
    Ozawa H; Awa M; Ono T; Arakawa H
    Chem Asian J; 2012 Jan; 7(1):156-62. PubMed ID: 22114015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multilayer Dye Aggregation at Dye/TiO
    Zhang L; Liu X; Rao W; Li J
    Sci Rep; 2016 Oct; 6():35893. PubMed ID: 27767196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Aggregation behaviour and electron injection/recombination dynamics of symmetrical and unsymmetrical Zn-phthalocyanines on TiO2 film.
    Ashokkumar R; Kathiravan A; Ramamurthy P
    Phys Chem Chem Phys; 2014 Jan; 16(3):1015-21. PubMed ID: 24281355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Theoretical study of acene-bridged dyes for dye-sensitized solar cells.
    Li M; Kou L; Diao L; Zhang Q; Li Z; Wu Q; Lu W; Pan D
    J Phys Chem A; 2015 Apr; 119(13):3299-309. PubMed ID: 25756752
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mg(OOCCH3)2 interface modification after sensitization to improve performance in quasi-solid dye-sensitized solar cells.
    Gao R; Wang L; Ma B; Zhan C; Qiu Y
    Langmuir; 2010 Feb; 26(4):2460-5. PubMed ID: 19856906
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.