BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 24402916)

  • 1. A design protocol for tailoring ice-templated scaffold structure.
    Pawelec KM; Husmann A; Best SM; Cameron RE
    J R Soc Interface; 2014 Mar; 11(92):20130958. PubMed ID: 24402916
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding anisotropy and architecture in ice-templated biopolymer scaffolds.
    Pawelec KM; Husmann A; Best SM; Cameron RE
    Mater Sci Eng C Mater Biol Appl; 2014 Apr; 37():141-7. PubMed ID: 24582233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Complex architectural control of ice-templated collagen scaffolds using a predictive model.
    Cyr JA; Husmann A; Best SM; Cameron RE
    Acta Biomater; 2022 Nov; 153():260-272. PubMed ID: 36155096
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying.
    Grenier J; Duval H; Barou F; Lv P; David B; Letourneur D
    Acta Biomater; 2019 Aug; 94():195-203. PubMed ID: 31154055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations.
    Pot MW; Faraj KA; Adawy A; van Enckevort WJ; van Moerkerk HT; Vlieg E; Daamen WF; van Kuppevelt TH
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8495-505. PubMed ID: 25822583
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freeze-Drying as a Novel Biofabrication Method for Achieving a Controlled Microarchitecture within Large, Complex Natural Biomaterial Scaffolds.
    Brougham CM; Levingstone TJ; Shen N; Cooney GM; Jockenhoevel S; Flanagan TC; O'Brien FJ
    Adv Healthc Mater; 2017 Nov; 6(21):. PubMed ID: 28758358
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controlling the Architecture of Freeze-Dried Collagen Scaffolds with Ultrasound-Induced Nucleation.
    Song X; Philpott MA; Best SM; Cameron RE
    Polymers (Basel); 2024 Jan; 16(2):. PubMed ID: 38257012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Altering crystal growth and annealing in ice-templated scaffolds.
    Pawelec KM; Husmann A; Best SM; Cameron RE
    J Mater Sci; 2015; 50(23):7537-7543. PubMed ID: 26412872
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cartilage tissue engineering using funnel-like collagen sponges prepared with embossing ice particulate templates.
    Lu H; Ko YG; Kawazoe N; Chen G
    Biomaterials; 2010 Aug; 31(22):5825-35. PubMed ID: 20452015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ice-templated, linearly aligned chitosan-alginate scaffold for neural tissue engineering.
    Francis NL; Hunger PM; Donius AE; Riblett BW; Zavaliangos A; Wegst UG; Wheatley MA
    J Biomed Mater Res A; 2013 Dec; 101(12):3493-503. PubMed ID: 23596011
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Novel freeze-drying methods to produce a range of collagen-glycosaminoglycan scaffolds with tailored mean pore sizes.
    Haugh MG; Murphy CM; O'Brien FJ
    Tissue Eng Part C Methods; 2010 Oct; 16(5):887-94. PubMed ID: 19903089
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of different hydroxyapatite incorporation methods on the structural and biological properties of porous collagen scaffolds for bone repair.
    Ryan AJ; Gleeson JP; Matsiko A; Thompson EM; O'Brien FJ
    J Anat; 2015 Dec; 227(6):732-45. PubMed ID: 25409684
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of the intrinsic permeability of ice-templated collagen scaffolds as a function of their structural and mechanical properties.
    Mohee L; Offeddu GS; Husmann A; Oyen ML; Cameron RE
    Acta Biomater; 2019 Jan; 83():189-198. PubMed ID: 30366136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of porous structure on the cell proliferation, tissue ingrowth and angiogenic properties of poly(glycerol sebacate urethane) scaffolds.
    Samourides A; Browning L; Hearnden V; Chen B
    Mater Sci Eng C Mater Biol Appl; 2020 Mar; 108():110384. PubMed ID: 31924046
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of heat-transfer capability on micropore structure of freeze-drying alginate scaffold.
    Wang C; Jiang W; Zuo W; Han G; Zhang Y
    Mater Sci Eng C Mater Biol Appl; 2018 Dec; 93():944-949. PubMed ID: 30274131
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ionic solutes impact collagen scaffold bioactivity.
    Pawelec KM; Husmann A; Wardale RJ; Best SM; Cameron RE
    J Mater Sci Mater Med; 2015 Feb; 26(2):91. PubMed ID: 25649518
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay between crosslinking and ice nucleation controls the porous structure of freeze-dried hydrogel scaffolds.
    Grenier J; Duval H; Lv P; Barou F; Le Guilcher C; Aid R; David B; Letourneur D
    Biomater Adv; 2022 Aug; 139():212973. PubMed ID: 35891598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ice Templating Soft Matter: Fundamental Principles and Fabrication Approaches to Tailor Pore Structure and Morphology and Their Biomedical Applications.
    Joukhdar H; Seifert A; Jüngst T; Groll J; Lord MS; Rnjak-Kovacina J
    Adv Mater; 2021 Aug; 33(34):e2100091. PubMed ID: 34236118
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications.
    Jithendra P; Rajam AM; Kalaivani T; Mandal AB; Rose C
    ACS Appl Mater Interfaces; 2013 Aug; 5(15):7291-8. PubMed ID: 23838342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Comparison of three-dimensional printing and vacuum freeze-dried techniques for fabricating composite scaffolds.
    Sun K; Li R; Jiang W; Sun Y; Li H
    Biochem Biophys Res Commun; 2016 Sep; 477(4):1085-1091. PubMed ID: 27404126
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.