These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

256 related articles for article (PubMed ID: 24403156)

  • 1. Distinct neural mechanisms for body form and body motion discriminations.
    Vangeneugden J; Peelen MV; Tadin D; Battelli L
    J Neurosci; 2014 Jan; 34(2):574-85. PubMed ID: 24403156
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of motion in the neural representation of social interactions in the posterior temporal cortex.
    Landsiedel J; Daughters K; Downing PE; Koldewyn K
    Neuroimage; 2022 Nov; 262():119533. PubMed ID: 35931309
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigating the neural basis of basic human movement perception using multi-voxel pattern analysis.
    Ma F; Xu J; Li X; Wang P; Wang B; Liu B
    Exp Brain Res; 2018 Mar; 236(3):907-918. PubMed ID: 29362830
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Human functional magnetic resonance imaging reveals separation and integration of shape and motion cues in biological motion processing.
    Jastorff J; Orban GA
    J Neurosci; 2009 Jun; 29(22):7315-29. PubMed ID: 19494153
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Moving Toward versus Away from Another: How Body Motion Direction Changes the Representation of Bodies and Actions in the Visual Cortex.
    Bellot E; Abassi E; Papeo L
    Cereb Cortex; 2021 Mar; 31(5):2670-2685. PubMed ID: 33401307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dissociation of extrastriate body and biological-motion selective areas by manipulation of visual-motor congruency.
    Kontaris I; Wiggett AJ; Downing PE
    Neuropsychologia; 2009 Dec; 47(14):3118-24. PubMed ID: 19643118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhanced activation in the extrastriate body area by goal-directed actions.
    Takahashi H; Shibuya T; Kato M; Sassa T; Koeda M; Yahata N; Suhara T; Okubo Y
    Psychiatry Clin Neurosci; 2008 Apr; 62(2):214-9. PubMed ID: 18412845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Extrastriate Body Area and identity processing: An fMRI guided TMS study.
    Pann A; Bonnard M; Felician O; Romaiguère P
    Physiol Rep; 2021 Apr; 9(8):e14711. PubMed ID: 33938163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global versus local: double dissociation between MT+ and V3A in motion processing revealed using continuous theta burst transcranial magnetic stimulation.
    Cai P; Chen N; Zhou T; Thompson B; Fang F
    Exp Brain Res; 2014 Dec; 232(12):4035-41. PubMed ID: 25200175
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TMS reveals flexible use of form and motion cues in biological motion perception.
    Mather G; Battaglini L; Campana G
    Neuropsychologia; 2016 Apr; 84():193-7. PubMed ID: 26916969
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A model of biological motion perception from configural form cues.
    Lange J; Lappe M
    J Neurosci; 2006 Mar; 26(11):2894-906. PubMed ID: 16540566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neural interactions in occipitotemporal cortex during basic human movement perception by dynamic causal modeling.
    Gu J; Liu B; Sun X; Ma F; Li X
    Brain Imaging Behav; 2021 Feb; 15(1):231-243. PubMed ID: 32141031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Event-related repetitive transcranial magnetic stimulation of posterior superior temporal sulcus improves the detection of threatening postural changes in human bodies.
    Candidi M; Stienen BM; Aglioti SM; de Gelder B
    J Neurosci; 2011 Nov; 31(48):17547-54. PubMed ID: 22131416
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dorsal stream development in motion and structure-from-motion perception.
    Klaver P; Lichtensteiger J; Bucher K; Dietrich T; Loenneker T; Martin E
    Neuroimage; 2008 Feb; 39(4):1815-23. PubMed ID: 18096410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of TMS over premotor and superior temporal cortices on biological motion perception.
    van Kemenade BM; Muggleton N; Walsh V; Saygin AP
    J Cogn Neurosci; 2012 Apr; 24(4):896-904. PubMed ID: 22264195
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Integration of Motion and Form Cues for the Perception of Self-Motion in the Human Brain.
    Kuai SG; Shan ZK; Chen J; Xu ZX; Li JM; Field DT; Li L
    J Neurosci; 2020 Jan; 40(5):1120-1132. PubMed ID: 31826945
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Generic Mechanism for Perceptual Organization in the Parietal Cortex.
    Grassi PR; Zaretskaya N; Bartels A
    J Neurosci; 2018 Aug; 38(32):7158-7169. PubMed ID: 30006362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The selectivity and timing of motion processing in human temporo-parieto-occipital and occipital cortex: a transcranial magnetic stimulation study.
    Hotson JR; Anand S
    Neuropsychologia; 1999 Feb; 37(2):169-79. PubMed ID: 10080374
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Attributing intentions to random motion engages the posterior superior temporal sulcus.
    Lee SM; Gao T; McCarthy G
    Soc Cogn Affect Neurosci; 2014 Jan; 9(1):81-7. PubMed ID: 22983598
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The temporal characteristics of motion processing in hMT/V5+: combining fMRI and neuronavigated TMS.
    Sack AT; Kohler A; Linden DE; Goebel R; Muckli L
    Neuroimage; 2006 Feb; 29(4):1326-35. PubMed ID: 16185899
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.